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Appendix I: Algorithm

Least-Squares Formalism

I assume that all geologic and paleomagnetic data that constrain displacement, strain,

and/or rotation in a particular timestep have been transformed to scalar rate estimates n
kr . (The

subscript Kk ,,1 �=  identifies the datum, and the superscript n identifies the timestep.)  Let the

corresponding scalar rate predictions derived from the velocity field of the finite-element model

in a particular timestep be called n
kp .  (In the remainder of this section I will discuss only a sin-

gle computational time-step, so the superscript n will be suppressed.)  I further assume that each

scalar rate kr  has an uncertainty that can be approximated by a Gaussian probability distribution

with standard deviation kσ , and that the errors in these rates are independent. (A Gaussian prob-

ability distribution is reasonably appropriate for the numerator in each rate, which is an amount

of strain or displacement.  It is not appropriate for the denominator, the elapsed time, which typi-

cally comes with a hard upper limit based on cross-cutting relations but without any lower limit.

Because of this, I will iterate the solution of the entire history in a way that allows additional de-

grees of freedom in each rate history; this method is described below.  However, in each individ-

ual iteration, the elapsed time is held constant, giving a Gaussian distribution for the rate.)

Finally, I assume that there is a probability 10 ≤≤ kq  that each datum is relevant to the

timestep. Normally kq  is unity because irrelevant data are simply omitted from the list

Kk ,,1 �= . However, in the cases of certain paleostress data fractional kq  are required.  The

natural logarithm of the density of the joint probability that the velocity model matches all the

relevant rates is then formed from the individual probability densities (Φ) as:
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I refer to this quantity S as the "score" of the velocity solution, which is to be maximized. That is,

the sum of squares of the relevant prediction errors (each divided by the variance of the corre-

sponding rate) is to be minimized.
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On the surface of a spherical planet with radius R, define a coordinate system of colati-

tude (θ) measured southward from the North Pole, and longitude (φ) measured eastward from the

prime meridian. The unknowns in each velocity solution are the horizontal θ-components and φ-

components of the velocity of the surface. The predicted rates kp  can be expressed as a linear

combination of the velocity components v (Southward) and w (Eastward) at each of the J nodes

of a finite element grid:
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With this linear relation, S is a quadratic form in the nodal-velocity-component values jv

and jw , so it is maximized by finding the single stationary point in multi-dimensional velocity

space where
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Algebraically, this leads to a JJ 22 ×  linear system, which can be thought of as being partitioned

into 4 submatrices times two subvectors equaling two subvectors:
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using the abbreviations
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Boundary Conditions

The equations stated above are singular in the absence of boundary conditions. Some

edge(s) of the model must be fixed (or moved in a predetermined way) to provide a velocity ref-

erence frame. I replace the row equations that state that S is stationary with respect to variations
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in these nodal velocity components with simpler equations stating the desired values of these

components.

This method permits only velocity boundary conditions, not stress boundary conditions.

Along each axis (θ or φ) one boundary should be constrained and one left free (because integrat-

ing strain information to find velocities is like solving first-order differential equations). When

one margin of a continent is facing a subduction zone, it is best to leave that boundary free.

A-priori or Pseudo-Data

An essential context for all the geologic data showing locally intense straining is that they

should be overlaid on a set of a-priori data (or “pseudo-data”) stating that in other places the

strain-rate is close to zero. An appropriate formalism is to assign a zero target strain-rate, with a

statistical uncertainty. A larger standard deviation should be attached to this null hypothesis in

complex regions where unknown faults and orogenic phases might have been buried or over-

looked.

To implement these constraints, the score S of any velocity solution, which is to be opti-

mized, is first augmented by a term:
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where W  is the weight coefficient for all pseudo-data (in units of m-2), µ is the standard devia-

tion of the (nominally zero) strain-rate (in 1−s ), and U is the area without active faults. In prac-

tice, any finite element that has no active fault crossing it is a part of U. Weighting by area is

used to make this new term roughly independent of local variations in finite element size. How-

ever, an appropriate value for the weight coefficient W is approximately the inverse of the mean

of the areas of all finite elements, as explained below.

This term has the effect of causing unfaulted areas to behave as Newtonian-viscous sheets

of lithosphere. The algorithm will adjust the velocity in each time step to minimize the area inte-

gral of squared strain-rates for these elements; this is exactly the result one obtains by beginning
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from the momentum equation (in the absence of horizontal forces), adopting a linear rheology,

and solving for velocity with inhomogeneous boundary conditions.

The 22×  strain-rate tensor ε�~  on the spherical surface is calculated by summing spatial

derivatives of the nodal functions. The nodal functions that I use were introduced by Kong and

Bird [1995] and shown to satisfy the requirements of horizontality, continuity, and completeness:
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In this notation, the superscript j on the vector nodal function j
xG

�

 or nodal function component
j

yxG ,  identifies the node that has unit velocity (all other nodes having zero velocity in this par-

ticular nodal function). Subscript 1=x  indicates the nodal function associated with unit south-

ward velocity v; subscript 2=x  indicates the nodal function associated with unit eastward

velocity w. Subscript 1=y  indicates the southward or θ-component of the vector nodal function
j

xG
�

, and subscript 2=y  indicates the eastward or φ-component.

The coefficients of the linear system are augmented by
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where L,,1 �� =  identifies the "nonfaulting" elements comprising U, with individual areas 
�

a .

In practice, area integrals within each element are performed numerically, using 7 Gauss points

with associated weights [Zienkiewicz, 1971].
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Use of Balanced Cross-sections

Many structural geologists publish restored cross-sections from which they estimate the

amount of shortening or extension along the line of section. Dividing the amount of extension

(compression is negative extension) by the time available gives the relative velocity component

(along the line of section) for the end points, which is the rate estimate kr . If the endpoints of the

section are marked by position vectors kb
�

 and kd
�

, then 0=kc  and
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where )( kb
�

γ  and )( kd
�

γ  are the forward azimuths at each end of the directed great circle arc

kk db
��

→  (each measured clockwise from North).

Use of Fault-slip data

A large fraction of the available data concern offsets on faults. While offset is actually a

vector, I use only the larger of the dip-slip or strike-slip components and treat this as a scalar da-

tum. This is because the strike-slip component of dominantly dip-slip faults is rarely known,

while any dip-slip on strike-slip faults is irrelevant to relative horizontal velocities. After division

by the time available, this scalar offset becomes a scalar relative velocity component across the

fault.

When a fault is long enough to cross several finite elements, I impose the same slip and

slip-rate in each element. In the case of rigid-microplate tectonics, where each fault connects to

other faults at triple-junctions, this method is reasonably accurate. The other end-member is the

case where no faults connect, but all terminate within the domain. In that case, each fault might

be expected (on the basis of crack theory for linear materials) to have an ellipsoidal profile of slip

versus length. Such “elliptical” faults would have a mean slip which is only 79% (π/4) of their

maximum slip. Thus, my method might overstate strain by 27% in some cases where faults do

not connect and where the geologic offsets reported are the maximum offsets. However, if the

geologic offsets are considered to be determined at random points of convenience, then once

again there is no systematic error.
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If every fault extended continuously across the model from boundary to boundary, one

could simply use its slip-rate as a constraint on the relative velocity of the nodes on opposite

sides of the fault. However, the number of faults in many applications is so great that such cus-

tomized grids are prohibitively expensive to work with. Thus, I have developed a more general

approach, which allows any number of faults to cross a given finite element.

For each finite element, there are four steps: (a) Form the target strain-rate tensor for that

element as the sum of the strain-rate tensors implied by all the active fault segments cutting that

element; (b) Form the matrix of covariances of the strain-rate components in that element as the

sum of the covariances added by all the active fault segments, plus the small covariance of the

strain-rate in the continuum blocks between them; (c) Diagonalize the covariance matrix to find

three principal axes (in strain-rate space) along which the uncertainties are independent, and also

rotate the target strain-rates into this new coordinate system; (d) Add these 3 independent targets

as scalar data with known uncertainties in the global system of equations.

The strain-rate tensor in the horizontal plane, ε�~ , is a second-rank tensor of size 2×2. I

simplify the notation by treating the three independent components of the strain-rate tensor

( EWSENS εεεεεε φφθφθθ ������ === ,, ) as a one-subscript vector ( 3,2,1; =mmε� ), permitting us to write

the covariance of strain-rates as a 3×3 matrix. If all the active fault segments that cut (even part-

way) through one finite element are numbered Zz ,,1 �= , then I express the strain-rate vector in

the element as a linear combination of their scalar slip-rates zs :

3,2,1;
1

==�
=

msH
Z

z
zzmmε� . (11)

The covariance matrix of the strain-rate components is composed of two parts: the continuum

compliance common to all parts of the lithosphere (see “A-priori or pseudo-data” above), and the

terms arising from the standard deviations zsδ  of the scalar slip-rates zs :
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To find zH
�

 (the partial derivative of element strain-rate with respect to slip-rate of one

active fault), I make the simplifying restriction that no node lies exactly on a fault. Also, I slightly

straighten the traces of any fault segment that crosses the same element boundary more than

once. Then, each fault segment (with its projected extensions, if necessary) must separate one

node of the element from the other two. Let zu  be the index number of the isolated node. If node

zu  is on the right side of the fault segment (when looking along its azimuth zγ , measured clock-

wise from North), then I define the variable zη  as +1; otherwise, it is -1. Let zκ  be the fraction

of the width of the element that is cut by the fault segment: 10 ≤< zκ .

In the case of a strike-slip fault, the scalar-slip rate zs  is defined as the right-lateral offset

divided by the time available. (Left-lateral offsets are negative right-lateral offsets.)  Then
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In the case of dip-slip faulting, it is most convenient to define zs  as the net horizontal extension

perpendicular to the fault trace, divided by the time available. (Thrusting is considered to be

negative extension.)  In the case of detachment faulting, net horizontal extension is the distance

from the breakaway fault in the foot-wall to the tip of the hanging-wall (reconstructed if neces-

sary), regardless of whether the fault slipped at a low angle or, alternatively, slipped at a high an-

gle and then rotated during further extension. In the more common case of dip-slip faulting

without horizontal-axis rotation of foot-wall or hanging-wall, net horizontal extension is the

relative vertical offset (throw) times the cotangent of the fault dip. My convention is that normal

and detachment faulting have positive zs  and thrust faults have negative values. Then,
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The next step is to find the 3 positive eigenvalues ( hλ ; 3,2,1=h ) of V~  and their corre-

sponding unit eigenvectors ( hmΛ ). These eigenvectors indicate strain-rate patterns that are statis-

tically uncorrelated; they have target amplitudes of �
=

Λ
3

1m
hmmε�  and standard deviations of hλ ,

respectively. Each of the three targets is now imposed as a scalar datum in the global system of

equations. The corresponding coefficients of the nodal velocities are
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(Note that k equals h plus a constant that indicates how many data have previously been incorpo-

rated into the system.)

Once the global velocity solution has been found for any timestep, it is necessary to do a

local optimization calculation within each faulting element to find the predicted (model) rates

zp  at which each fault ( Zz ,,1 �= ) is slipping, as well as the residual strain-rate c
mε�  which is

due to deformation of the continuum around the faults. The total strain-rate of the element must

be the sum of the continuum and the fault contributions:

m

Z

z
zzmm pH εε �� =+�

=1

c . (15)

This problem is different from the global problem because the mε�  vector is known. Be-

cause of this constraint, it is an algebraic convenience to use the Lagrange multiplier method with

three temporary weight variables ( 1ς , 2ς , 3ς ). Define the local score (in one element) that is to

be optimized as:
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where zsδ  is the standard deviation of each slip rate according to the input data. Then, to find a

local solution that has all fault rates as close as possible to their goals, while the continuum

strain-rate is close to zero, and the total strain-rate is correct, find the stationary point of S ′  with

respect to variations in the zp , the c
mε� , and the mς  in turn, leading to a linear system.

The slip-rate n
kp  that is finally recorded (for fault k, in timestep n) is the average of the rates zp

in all the elements the fault passes through, where the averaging weights are the segment lengths

z�ρ .

The method described here for incorporating faults effectively multiplies each known

fault offset into roughly 1~2 scalar data per finite element crossed by the trace. In addition, 1~2

pseudo-data per element crossed are used to express the a-priori assumption of continuum stiff-

ness. Therefore, for parity between faulting elements and non-faulting elements, the suggested

value of W is the inverse of the mean area of finite elements.

Use of Paleomagnetic Data

I assume that the paleomagnetic dataset is restricted to sites that include some geologic or

geochemical indication of the orientation of the paleo-horizontal plane at the time of magnetiza-

tion, and that have been properly corrected for local structure. It is also best to exclude certain

sedimentary rocks that are known to be especially prone to post-magnetization compaction,

which can produce a non-tectonic inclination anomaly.

The interpretation of paleomagnetic inclination and declination data in terms of North-

South displacement and rotation requires the definition of a reference polar wander path. It is

necessary to use the same velocity reference frame for polar wander and for velocity boundary

conditions.

The inclination of a sample yields its magnetic paleo-latitude according to a simple dipole

model for the paleo-field. This is converted to a paleo-latitude anomaly by comparison with the

polar wander path. Multiplying this paleolatitude anomaly by the radius of the planet and divid-
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ing by the length of time available results in the mean velocity component in the paleo-direction

of magnetic South (at the time of magnetization). This becomes the rate estimate kr . For com-

parison, the model prediction is formed using

γγ
γγ

sincos
sincos

2,21,2

2,11,1
jj

kj

jj
kj

GGg
GGf
−=
−=

(17)

and 0=kc , where the nodal functions j
yxG ,  are evaluated at the datum location, and γ  is the

azimuth (measured clockwise) of North-pointing paleomagnetic declinations (at the time of mag-

netization) with respect to present geographic North (in the reference frame of the undeformed

part of the continent) at the datum location.

While the magnetic declination of a sample is clearly related to its history of rotation

about a local vertical axis, the relationship is non-unique and model-dependent. In general, the

declination anomaly can only be converted to a vertical-axis rotation if the displacement of the

sample is negligible or approximately known. Here I assume that these questions have been re-

solved by the assumption or approximation most appropriate to the particular problem, and that

estimated net rotations about the local vertical axis ( γ∆ ) are available as input data. I also as-

sume that the sense of large rotations has been decided in advance based on regional tectonics.

These values determine the average rotation rates tr kk γω ∆== (datum) , where γ∆  is the

vertical-axis rotation in going from past to present (counterclockwise positive), and t is the age of

the magnetization. The interpretation of these rotations requires some assumptions about the

shape and the stiffness of the bodies carrying the remnant magnetization; I assume that the out-

crops selected for paleomagnetic sampling were rigid inclusions of equidimensional shape em-

bedded in a deforming continuum. Therefore, the rotation rate that the magnetization would be

predicted to record is

��
�

�
��
�

�
−+≅=

∂φ
∂θ

∂θ
∂

θ
ω vww

R
p kk csc

tan2
1(model) . (18)

Consequently, the model predictions are formed using 0=kc  and
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1,22,22,2

1,12,12,1

csc
tan2

1

csc
tan2

1

. (19)

The methods described in previous sections effectively multiply the continuum-stiffness

assumption into one scalar datum per finite element, and multiply each fault offset into 1~2 sca-

lar data per finite element traversed. If the finite-element grid has many elements, the paleomag-

netic data will require a similar weighting in order to avoid being overwhelmed in the global

solution. Accordingly, both f and g functions of (17) and (19) should be multiplied by a dimen-

sionless weight factor P which is common to all paleomagnetic data. A suggested value for P is

the square root of twice the number of finite elements, which is the mean number of elements

traversed by a fault crossing the whole grid. Then, a paleomagnetic datum indicating an exotic

terrane will receive the same procedural weight as a fault-offset datum on the terrane-bounding

fault, and the outcome will depend on the relative values and their uncertainties. Different values

of P can be used to investigate solutions in which paleomagnetic data are either less or more

prominent.

Use of Stress Directions

One principal stress direction must always be perpendicular to the free surface of the

Earth, or approximately vertical. Thus, the orientation of the stress tensor is described by the

azimuth (γ ; measured clockwise from North) of the most-compressive horizontal principal stress

( 1hσ̂ ). This direction is geologically recorded as the strike of igneous dikes or other vertical veins

that break through any laterally-homogeneous, isotropic rock. In some cases a population of

faults with slickensides can be statistically analyzed to determine the stress direction [e.g.,

Gephart, 1990].

To relate this information about stress to my kinematic model, I approximate the litho-

sphere as horizontally isotropic, so that the principal directions of stress are the same as the prin-

cipal directions of strain rate. There may be an error of up to 35° associated with this assumption;
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even so, I believe that the solutions will typically be more accurate and reasonable than those that

ignore stress data.

Once we know the azimuth of 1hσ̂ , we can use this as the direction of a new local hori-

zontal axis �α , and also define a perpendicular horizontal axis β̂  (right-handed: r̂ˆˆ =× βα ). In

these coordinates, the requirement that α̂  is the most-compressive horizontal principal strain-rate

direction can be stated in two parts: 0=αβε�  and ββαα εε �� < . In terms of the global coordinate

system, the first becomes

0)2sin(
2

)2cos( =
−

+ γ
εε

γε φφθθ
θφ

��

� . (20)

In terms of derivatives of velocity, this is
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so the coefficients of the linear system can be computed from the factors
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(22)

if we use 0=kc  and a rate estimate 0=kr . The difficulty is in deciding what standard deviation

σk  to associate with this constraint 0=αβε� , since we have transformed the constraint from one

concerning an angle to one concerning a strain-rate component. When the calculation is first

starting and there are no strain-rates known as yet, a purely arbitrary small strain rate uncertainty

(ξ ) must be assigned as kσ . However, when strain rate estimates are available from a previous

time step (or from a previous iteration of the current time step), it is better to use

( ) ( )22

4
12 φφθθθφ εεεδγσ ��� −+=k , where the symbol δγ  indicates the standard deviation (in radi-

ans) of the azimuth γ of the direction 1hσ̂ . This suggests that the velocity solution should be iter-

ated within each timestep; in this project I have used 4 iterations per timestep.

The second requirement was the inequality ββαα εε �� < . During each iteration of the solu-

tion, I evaluate the strain rates ααε�  and ββε�  to see if this is true. If not, then in future iterations I
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impose an additional constraint ξεε ααββ += �� , where ξ  is a small (positive) strain rate differ-

ence which must be arbitrarily chosen. In terms of the global coordinates,
( ) ξγεγεε θφθθφφ =+− )2sin(2)2cos( ��� . (23)

This can be expressed in terms of velocity components as

ξγ
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so the coefficients of the linear system can be computed from the factors
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and 0=kc  if we create a new rate estimate ξ=kr . The same value of ξ  is also used to set the

standard deviation for this constraint as ξσ )83.0(=k , so that the Gaussian distribution (which

my method forces me to use) will best approximate the desired Heaviside distribution near the

origin.

Paleostress data are different from structural and paleomagnetic data because they are not

integral constraints over time, but momentary samples. A thin igneous dike may form in a day.

Therefore, it is necessary to distinguish between two types of published references on paleostress.

The more desirable type summarizes many paleostress indicators of different ages to show that

1hσ̂  has remained constant over some time interval from age 2t  to age 1t . These data should be

applied in each timestep of that interval ( ttntt ∆≤<∆ 21 ) with full relevance: 1=n
kq . The less

desirable type of reference concerns paleostress indicators whose age can only be constrained to

be less than 2t  but more than 1t . These are relevant to one of the timesteps in the interval, but it

is not clear to which. These should be applied in all timesteps of the interval, but with reduced

weight due to their reduced (mean) relevance: ( ){ }12,1inf tttq n
k −∆= .

Ideally, very complete datasets on paleostress direction would impose a “smoothness”

constraint on the velocity solutions, mimicking the smoothness that forward models have as a
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result of solving the momentum equation. In practice, there are rarely more than a dozen relevant

paleostress indicators in any given timestep. A related problem is that if each paleostress indica-

tor were only compared to the strain-rate tensor in a single finite element, then its influence on

the solution would decrease as the finite element grid was refined. I attempt to solve both prob-

lems by interpolating paleostress directions (with associated uncertainties) for every finite ele-

ment in the grid, based on the relevant paleostress data. The interpolation is by nonparametric

statistics based on the spatial autocorrelation of the present stress field as represented by the

World Stress Map [Zoback, 1992]. The interpolation method is given in Bird and Li [1996]; I use

the simpler of their two methods in which the data are considered independent, because this per-

mits the weighting of the original data by their relevance ( n
kq ) values during the interpolation.

In cases where stress-direction data are sparse, it may be desirable or necessary to use ac-

tive fault segments as additional indicators, assuming 1hσ̂  perpendicular to thrusts, etc. Only the

first phase of movement on a fault should be used to indicate stress, because in later times the

fault is an inherited plane of weakness.

Integration Over Time

I use the "predictor/corrector" method of time integration, as in earlier forward dynamic

models of the history of North America [Bird, 1988; Bird, 1992]. Each time-step begins with an

explicit “prediction” of new node locations. Using these, all nodal function derivatives, coeffi-

cients, and velocities are recomputed for the same timestep. Then, the “predicted” velocity for

that time-step is “corrected” by adding one-half of the (vector) change between the solutions. The

node locations are corrected accordingly. Bird [1989] presented studies of the accuracy of this

method; for practical purposes, it is sufficient to use timesteps of 1~5 m.y..

Iterative Revision of Rate Histories

Because the events in geologic history that can be dated are not always those we would

choose, many data about strain or displacement come with loose time windows, bracketing but

not specifying the true duration of deformation. However, adjacent data with better constraints
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should cause strain-rates to rise in the correct period. If the model predicted rate for any datum is

larger than the tentative goal rate, this is probably an indication that the goal rates for that datum

should be revised to permit more rapid deformation in a portion of the time window.

My method is to assign new target rates ( )*n
kr  (for datum k, in each timestep n), based on

the predicted rates n
kp  from the previous model, but adjusted by a constant factor to achieve the

correct total strain, displacement, or rotation. Assuming a sign convention such that all goal rates

are positive,

( ) ( ) ( )0,sup
0,sup

* n
k

n

n
k

n

n
k

n
k p

p

r
r

�
�
�

�

�

�
�
�

�

�

=
�

�
(26)

where the asterisk on the left indicates new goals for the next iteration, and all other quantities

are old values from the previous iteration. (The truncation of the actual rates at zero is used in

order to forestall a possible instability in the computation in which the denominator might be-

come very small because of a predicted history that includes an unanticipated sense reversal.)

There are data for which this formula is inadequate: those whose time window extends

back before the earliest time considered in the palinspastic reconstruction. My method for such

cases is based on the assumption that strain and displacement in the earlier (unmodeled) period

had the same sign as the net strain or displacement in the time period of the model. Therefore, if

the model predicts too much total strain in the modeled interval, the targets must be reduced us-

ing (26), in order to prevent implied earlier rates from switching sign. However, if the model

predicts too little strain, then the targets are not adjusted, because strain of the same sense in the

unmodeled period can make up the difference.

Another possible problem with method (26) is that in some cases it can cause numerical

instability (i.e., self-amplification of small rate variations). The method is stable when applied to

data with a constructive interaction (e.g., two fault segments that together form a microplate

boundary), neutrally stable for isolated data that interact only with the a-priori stiffness, and un-

stable for groups of data with a destructive interaction (e.g., two parallel thrust faults). In the un-



16

Bird [1998] Tectonics, 17(5), 780-801

stable case, the repeated application of (26) leads to a history in which only one of the data has a

non-zero rate in any particular timestep. This is undesirable because the details of their rate histo-

ries arise from the solution process and not from the data. To prevent this, I only apply (26) to

those data (and in those iterations) where the predicted rate in at least one timestep exceeds the

corresponding goal rate; this is a sign of a constructive interaction.

The entire computation is now repeated, beginning at the present. In many cases, data that

have tight time constraints are able to pinpoint the time of an orogeny locally, but their influence

is diluted by other data with broad time windows. Thus, the peak in strain-rate (as a function of

time) in the computed history is initially modest. However, with iteration the tentative rates for

the latter data will be adjusted to reflect a shorter, more intense event.

Idealized Test Cases

The program Restore (Appendix II) which realizes this algorithm has been successfully

tested in the following cases:

1. With no data except the a-priori constraint, and with a few boundary nodes fixed, the

grid remains static.

2. With no data except the a-priori constraint, and with velocity boundary conditions at

two nodes that imply plate rotation about a local Euler pole, the grid rotates as a rigid plate with

no deformation. During rotation at angular rate 10-15/s, internal strain rates are less than 2×10-

19/s.

3. Rotation of this “rigid” plate through finite timesteps does not add significant error. For

example, when the whole grid is rotated 60° in steps of 6° around a local Euler pole with the pre-

dictor/corrector method all fictitious strains are ≤0.8%, much less than the fictitious strains of

5.6% = [ ] 1)6cos( 10 −−
�  that would result from explicit time integration.

4. Regions with no data behave as isotropic sheets of incompressible viscous material

when forced to deform. For example, when a domain of 27° longitude range and 10° latitude

range lying along the equator is stretched E-W, the strain in the center can be described by
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2φφθθ εεε −== rr . When the uncertainty of the a-priori zero strain-rate (µ) is laterally hetero-

geneous, computed strain-rates ( �ε ) are higher in regions of higher µ. However, the scaling in this

case is 2~ µε� , not µε ~�  as one might guess.

5. When a single strike-slip fault that is an arc of a small circle cuts across the domain

from one side to the other, the resulting solution has relative rotation of two rigid plates about the

pole of the small circle. When a single dip-slip fault that is an arc of a great circle cuts across the

domain from one side to the other, the resulting solution has relative rotation of two rigid plates

about a point 90° away on the great circle.

6. When an active fault terminates in the model interior there is a conflict between the

datum showing fault activity and the a-priori assumption of no intraplate deformation. If the

plate stiffness ( 2µW ) is small and the fault’s slip-rate uncertainty ( sδ ) is also small, then the

reduction in slip rate is negligible. If both parameters are large, the fault may nearly be prevented

from slipping.

A quantitative measure of this effect can be derived from the analytic solution of a sim-

pler problem. Assume that an inverse model makes only one scalar prediction (p) which is to be

compared with all data. These data include rN  entries showing a positive rate of r with uncer-

tainty rσ , and 0N  entries showing a rate of zero, with uncertainty 0σ . If we define a dimen-

sionless parameter

2
0

2
0

r

r

N
N
σ
σ

≡Γ (27)

then the result of a maximum-likelihood solution is

1+Γ
Γ=

r
p . (28)

This case is more complicated because the model predicts a range of slip-rates along the

fault trace and a range of continuum strain-rates in its neighborhood. However, the scaling is:

�
=

L

zrN
1

~
�

�
κ (the number of finite elements crossed by the fault); 2

0 ~ WIN  (where I is the length
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of the fault trace); sr δσ ~ ; and Iµσ ≅0 . Together these suggest a new dimensionless parame-

ter

Ws

L

z

2
1

2

f )(δ

κµ
τ

�
=≡Γ �

�

(29)

in which τ is a dimensionless coefficient which depends on the type of faulting. Numerical tests

with one isolated fault in the middle of a plate show that these equations give good predictions of

mean slip-rate (within 5%) if the following coefficients are used: strike-slip 0.1s ≅τ ; thrust

2.0t ≅τ ; normal 5n ≅τ ; detachment 0.1d ≅τ .

7. In order to test the iteration of the tectonic history with (26), I divided the domain into

two plates with one great-circle strike-slip fault. Then, I artificially segmented the fault, assigning

the same offset to each segment, but assigning different (overlapping) time windows for slip on

each segment. With iteration, the algorithm slowly converged on the correct solution, in which

the slip history is the same for all segments, with all slip taking place within the shortest of the

time windows. If the assigned uncertainties in fault slip-rate are small and/or the continuum stiff-

ness ( 2µW ) is low, then convergence is slow, because actual slip rates are only slightly differ-

ent from goal rates, and hence the goals are only adjusted in small steps. Scaling suggests that the

number of iterations required for convergence should be proportional to ( 1f +Γ ), and numerical

trials confirm this. Thus, there is a trade-off between fitting the data closely and converging

quickly on the best deformation history. A good computational strategy is to set the parameters

for small values of Γ (≅ 1~3) in the early iterations, then to raise Γ in later iterations; such a

method is similar to simulated annealing.

8. Balanced cross-section data yield the correct relative displacement of their endpoints

when there is no conflict with other data. For example, when two cross-sections each span a long

thrust fault with very uncertain offset (e.g., σ = 1000 km), they determine its slip distribution and

also determine the relative rotation of the rigid plates on each side.
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9. If a single cross-section with nonzero extension is located in a plate interior away from

any faults or other data, there is a conflict between the cross-section datum and the a-priori as-

sumption of no intraplate deformation. I have found a dimensionless parameter for cross-

sections,

W2
c

2

cc σ
µτ≡Γ (30)

in which cσ  is the uncertainty of the extension rate of the cross-section. Used with equation (28),

this parameter gives a good prediction of model rates of cross-section extension when the non-

dimensional factor =cτ 0.8.

10. When several cross-sections showing equal shortening (or extension) are placed en-

echelon in a band (like stitches), they overcome the a-priori constraint of plate rigidity and define

a band of orogeny (or taphrogeny). In order for the far-field velocity difference to be similar to

the shortening (extension) velocity along each cross-section, the spacing between cross-sections

must be comparable to their individual lengths, or less.

11. When a microplate is completely free to move (e.g., isolated from the boundary con-

ditions by a small-circle strike-slip fault of unknown offset) and it contains a paleolatitude anom-

aly datum, the microplate moves toward or away from the paleopole in accordance with the

datum.

12. When a paleomagnetic site with a paleolatitude anomaly occurs in a plate interior

isolated from active faults or other data, there is a conflict with the a-priori assumption of no de-

formation, and the solution is a compromise. There is a dimensionless factor for paleolatitude

anomalies

W
P

2
p

2

pp σ
µτ≡Γ (31)

(where pσ  is the uncertainty in the mean N-S velocity in m/s, and 1p ≅τ ) which can be used

with (28) to predict the result. For example, with typical values 100=P , 10101 −×=W  /m2, and
10

p 106 −×=σ  m/s (5°/30 Ma), the N-S motion of the site will only exceed half its nominal value
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for 16105 −×>µ  /s; this is a large value that might be assigned in British Columbia, but would

not be appropriate in Wyoming.

13. When a plate containing a single paleomagnetic site indicating a vertical-axis rotation

is constrained at only one node, it rotates at the correct rate without negligible internal deforma-

tion.

14. When an paleomagnetic site showing vertical-axis rotation occurs in a plate interior

isolated from active faults or other data, there is a conflict with the a-priori assumption of no de-

formation, and the solution is a compromise. There is a dimensionless factor for rotation data

aW
P

2
r

2

rr σ
µτ≡Γ (32)

(where rσ  is the uncertainty in the rotation rate in radians per second, a is the area of a typical

finite element, and 2.0r ≅τ ) which can be used with (28) to predict the result.

15. If uniform stress-direction data are given for each element, in a problem where other

data do not completely dictate the stress direction, then the velocity solution changes to honor the

stress constraints. One problem tested had a rectangular plate fixed on its eastern side, and forced

to deform by several paleomagnetic sites with equal latitude anomalies along its western edge. If

the stress-direction was not constrained, the solution was a combination of dextral simple shear

and clockwise rotation. If N-S 1hσ  was specified, the solution changed to a combination of dex-

tral simple shear and E-W extension, with little rotation. Three refinements of the velocity solu-

tion were enough for convergence.

Assignment of Uncertainties to Rate Estimates

Most structural and paleomagnetic data indicate that some strain or displacement (sym-

bolized here by the generic ε ) occurred after time 2t  and before time 1t . They do not imply that

the rate was constant during that period. The computation begins by using the average rate as the

rate estimate in each timestep (except, less at each end):
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However, it would be inadequate to estimate the rate uncertainties n
kσ  by dividing the

standard deviation of the deformation ( kδε ) by the time interval ( )ktt 12 − . That would confuse

the uncertainty in the rate during one timestep with the uncertainty in the average rate. Also, it

would have the perverse effect of making data less important as their geologic age constraints

became tighter!

A related practical problem concerns the convergence of the iteration process by which

we attempt to revise the rate histories (26). Fault offsets are often known with a very small un-

certainties. If the offset uncertainty is the only contribution to n
kσ , then the rate uncertainty is so

small that the model prediction of the rate is virtually identical to the rate goal. Therefore, the

adjustment of the rate history is unacceptably slow.

My solution is to begin the iteration process with a standard rate uncertainty *σ  assigned

to each datum in a homogeneous class. This value is chosen so as to give Γ values of order unity

for all data. This permits the data to interact, and permits adjustment of some rate histories in a

reasonable number of iterations. Then, as the iteration continues, the rate uncertainties are gradu-

ally changed to values based only the uncertainties in the numerators, according to
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(for all n, and for all k in the class) where i is the iteration number, up to a maximum of M. One

way to think of this is that (most) rate uncertainties are initially increased arbitrarily to allow for

the uncertainty in the time-history, or denominator. Once the time-history has been adjusted, they

are smoothly returned to values based only on their numerators. Another way to say this is that

the algorithm begins with a least-squares solution, passes through a phase of weighted-least-

squares solutions, and finishes with a maximum-likelihood solution.


