1
4

Finite-Difference Method for Forward Modeling

(using Heat-Conduction as an example)

I. MOTIVATION

When there is more than one independent variable, differential equations become "partial differential equations" that can't just be integrated. Problems in this class include diffusion (of heat, chemicals, pore pressure), and radiation (of seismic waves), and deformation (of grains, outcrops, or plates). We need a general solution technique.

II. FINITE-DIFFERENCE METHOD

1. Select the governing differential equation, and separate parameters (constant values) from independent variables (can take any value) from dependent variables (to be determined). For example, for problems of heat conduction in motionless material of uniform and isotropic thermal conductivity,

[image: image1.wmf]H

z

T

y

T

x

T

K

t

T

C

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

2

2

2

2

2

2

¶

¶

¶

¶

¶

¶

¶

¶

r

Parameters:

SYMBOL 114 \f "Symbol" = density (mass/volume, or kg/m3)

C = heat capacity (energy/mass/degree, or J kg-1 SYMBOL 176 \f "Symbol"K-1)

K = conductivity (power/distance/degree, or W m-1 SYMBOL 176 \f "Symbol"K-1)

H = heat production (power/volume, or W/m3)

Notes:
-In some references, the equation is divided through by
[image: image2.wmf]r

C

 and the new parameter "thermal diffusivity"
[image: image3.wmf]k

r

º

K

C

 is used.

-Parameters SYMBOL 114 \f "Symbol", C, and H can vary in space, but if K varies (or if K is anisotropic), then the term involving K must be rewritten as
[image: image4.wmf](

)

T

K

Ñ

·

Ñ

r

r

~

.

Independent Variables:

t = time (time, or s)

x,y,z = Cartesian space coordinates (distance, or m)

Dependent Variables:

T = temperature (degrees, SYMBOL 176 \f "Symbol"K or SYMBOL 176 \f "Symbol"C)

2. Reduce number of independent variables to a minimum by assuming some derivatives are small.

For long, straight structures that extend in the y direction,
[image: image5.wmf]¶

¶

2

2

T

y

 is small:

[image: image6.wmf]H

z

T

x

T

K

t

T

C

+

÷

÷

ø

ö

ç

ç

è

æ

+

=

2

2

2

2

¶

¶

¶

¶

¶

¶

r

3. Set up a rectangular grid in the (known) independent variable(s), with storage for the dependent variable values to be determined.

[image: image7.wmf]T

x

y

z

t

(

,

,

,

)

 is replaced by
[image: image8.wmf]T

t

i

j

,

(

)

, where i = 1, ..., NZ is the z index ("row", in a cross-section view), and where j = 1, ..., NX is the x index ("column", in a cross-section view). In Fortran, this is T(I, J). In Pascal, it is T[i, j].

As usual,
[image: image9.wmf](

)

x

j

x

x

D

-

+

=

1

min

, etc.

4. Replace derivatives in the space direction(s) with (centered) finite differences.

[image: image10.wmf](

)

(

)

H

z

T

T

T

x

T

T

T

K

t

T

C

j

i

j

i

j

i

j

i

j

i

j

i

j

i

+

÷

÷

ø

ö

ç

ç

è

æ

D

+

-

+

D

+

-

=

+

-

+

-

2

,

1

,

,

1

2

1

,

,

1

,

,

2

2

¶

¶

r

(Note: there will be problems applying this equation at the edges of the grid: i, j = 1 or N. We will deal with this in point 5 below.)

5. Before solution, impose the boundary conditions.

For every independent variable (x, y, z, t) there are two edges/boundaries/extreme-values.

"Imposing a boundary condition" means specifying the dependent variable (T) or its derivative (
[image: image11.wmf]¶

¶

T

x

,
[image: image12.wmf]¶

¶

T

z

, SYMBOL 188 \f "Symbol") at one or both of these extreme-values.

The number of boundary conditions to apply is equal to the order of the highest derivative with respect to that independent variable.

[In this problem, we need 2 BC's in x, 2 in z, and 1 in t. The "boundary condition" in t is more often called the "initial condition".]

You choose the BC's that seem most reasonable for a particular problem; there are no mathematical rules!

The addition of BC's solves the problem above: if we impose T at the edge, we don't have to apply the equation on the edge, so we don't need to read T from non-existent points. If we impose the derivative of T, then we can create a fictitious outside point to use in the equation.

6. Apply one of the integration formulas (explicit, implicit, trapezoidal, predictor/ corrector) to replace the time derivative.

If we choose the less accurate explicit method, then we replace
[image: image13.wmf]¶

¶

T

t

 with the forward difference
[image: image14.wmf](

)

t

t

T

t

T

D

-

)

(

)

(

1

2

. Then, after dividing through by SYMBOL 114 \f "Symbol"C,

[image: image15.wmf](

)

(

)

C

t

H

z

T

T

T

x

T

T

T

C

t

K

t

T

t

T

t

j

i

t

j

i

t

j

i

t

j

i

t

j

i

t

j

i

j

i

j

i

r

r

D

+

ú

ú

û

ù

ê

ê

ë

é

D

+

-

+

D

+

-

D

+

=

+

-

+

-

2

)

(

,

1

)

(

,

)

(

,

1

2

)

(

1

,

)

(

,

)

(

1

,

1

,

2

,

1

1

1

1

1

1

2

2

)

(

)

(

(the advantage of the explicit formula is that T(t2) appears only on the left-hand-side, so it can be evaluated by a very simple program !

If we choose the more accurate trapezoidal method (average of the explicit time-integral with the implicit time-integral), then:

[image: image16.wmf](

)

(

)

(

)

(

)

C

t

H

z

T

T

T

x

T

T

T

z

T

T

T

x

T

T

T

C

t

K

t

T

t

T

t

j

i

t

j

i

t

j

i

t

j

i

t

j

i

t

j

i

t

j

i

t

j

i

t

j

i

t

j

i

t

j

i

t

j

i

j

i

j

i

r

r

D

+

ï

ï

ï

þ

ï

ï

ï

ý

ü

ï

ï

ï

î

ï

ï

ï

í

ì

ú

ú

û

ù

ê

ê

ë

é

D

+

-

+

D

+

-

+

ú

ú

û

ù

ê

ê

ë

é

D

+

-

+

D

+

-

D

+

=

+

-

+

-

+

-

+

-

2

)

(

,

1

)

(

,

)

(

,

1

2

)

(

1

,

)

(

,

)

(

1

,

2

)

(

,

1

)

(

,

)

(

,

1

2

)

(

1

,

)

(

,

)

(

1

,

1

,

2

,

2

2

2

2

2

2

1

1

1

1

1

1

2

2

2

1

2

2

2

1

)

(

)

(

(the disadvantage of this more accurate formula is that T(t2) appears on both the left-hand-side and the right-hand- side, so it can only be evaluated by a more complex program! It is necessary to:

-arrange the T's at each time into a vector, with one subscript (
[image: image17.wmf](

)

NZ

1

-

+

º

j

i

k

);

-set up a very large system of linear equations:

[image: image18.wmf]%

(

)

A

T

t

B

k

k

l

l

r

r

2

=

, where
[image: image19.wmf](

)

NZ

NX

,

,

1

,

´

=

K

l

k

-place all the known terms (such as
[image: image20.wmf]T

i

j

t

,

(

)

1

)into the
[image: image21.wmf]r

l

B

 vector;

-place the coefficients of the unknown
[image: image22.wmf]T

t

k

(

)

2

 temperatures into the matrix
[image: image23.wmf]%

A

k

l

;

-Use a standard subroutine for solving linear equations.

-Redistribute the solution vector
[image: image24.wmf]r

T

t

k

(

)

2

 into the spatial grid
[image: image25.wmf]T

t

i

j

,

(

)

2

.

The problem is that a PC running DOS is limited to about 500 Kb of memory for arrays, so the largest linear system that will fit is 357SYMBOL 180 \f "Symbol"357. In terms of the spatial grid, this is only
[image: image26.wmf]357

357

´

, or 18SYMBOL 180 \f "Symbol"18 points! (Memory is a more serious limit than execution time; even a 80386 PC could solve this linear system in about 40 s using FORTRAN and a 80387 math coprocessor.)

In practice, most people now use the ADI (Alternating-Direction Implicit) method of Peaceman and Rachford. This is well described in Ferziger's book, so it will not be repeated here. Essentially, one does each time-step in two half-steps. In the first half-step, the method is implicit in x but explicit in z. For the second time step, it is explicit in x and implicit in z. Fortunately, this is equivalent to using the midpoint rule for time-integration in one direction and the trapezoidal rule for time-integration in the other. The linear systems to be solved have size NX and NZ (not NX SYMBOL 180 \f "Symbol" NZ) so it takes much less memory and runs very much faster than the method above. Also, it is unconditionally stable!

7. Test for accuracy and stability as a function of time step.

Simple "first-order" methods like explicit and implicit will have an error proportional to SYMBOL 68 \f "Symbol"t.

Fancier "second-order" methods like trapezoidal or predictor-corrector or alternating-direction-implicit (your lab) have an error proportional to (SYMBOL 68 \f "Symbol"t)2.

A more basic issue is that some methods are unstable (blow up) for SYMBOL 68 \f "Symbol"t above some limit. The explicit method is notorious for this; it SYMBOL 68 \f "Symbol"t must be less than
[image: image27.wmf]h

2

2

k

, where h is inf(SYMBOL 68 \f "Symbol"x, SYMBOL 68 \f "Symbol"z).

III. ADVECTION by flow

The equations above are for the case of static conduction. However, many interesting problems involve flow (e.g., subduction, seafloor spreading, pluton intrusion, volcanic eruptions). When the rocks are moving at velocity
[image: image28.wmf]r

V

x

z

(

,

)

 with respect to the F-D grid, the heat equation requires additional terms:

[image: image29.wmf]z

T

V

x

T

V

H

z

T

y

T

x

T

K

t

T

C

z

x

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

r

-

-

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

2

2

2

2

2

2

(or, in vector notation,
[image: image30.wmf]-

·

Ñ

r

r

V

T

).

It is possible to represent these new terms by a finite-difference approximation:
[image: image31.wmf]÷

÷

ø

ö

ç

ç

è

æ

D

-

-

÷

÷

ø

ö

ç

ç

è

æ

D

-

-

-

+

-

+

z

T

T

V

x

T

T

V

t

j

i

t

j

i

z

t

j

i

t

j

i

x

2

2

)

(

,

1

)

(

,

1

)

(

1

,

)

(

1

,

1

1

1

1

however, in practice this will only be accurate when using very tiny time steps. If you try to move the rocks as much as one grid-point per time step, you will have all sorts of trouble with artificial waves in the temperature field.

A more practical method is to omit the extra terms from the finite-difference computation, but to write some extra code that moves the temperatures without changing them. That is, to approximate heat conduction in moving material, alternate between static conduction and adiabatic motion within each time step. The new code that will do the adiabatic motion can be written as follows:

1. Use a new array to receive the moved ("translated") temperatures, so you won't overwrite any of the values you are reading.

2. For each point of the new array, look "back upstream" to find the original position (at time t = t1) of the rock that will arrive at that grid point at t = t2.

3. Determine its temperature by interpolation in the old array (which is easy, since you have data on a regular grid).

4. Assign that temperature to the grid point of the new array.

Notice that for some boundary points, it will be necessary to "reach outside the grid" to get the T values that will arrive at the end of the timestep. To make this possible, put all boundary conditions on the inflow side(s) of the grid, and none on the outflow sides. For example, if
[image: image32.wmf]V

x

>

0

 and
[image: image33.wmf]V

z

>

0

, then impose both T and
[image: image34.wmf]¶

¶

T

x

 on the low-x side, and impose both T and
[image: image35.wmf]¶

¶

T

z

 on the low-z side. This will make it possible to extrapolate outside the grid and construct the needed values.

A good rule of thumb is to adjust the time step SYMBOL 68 \f "Symbol"t so that no rock moves much more than one grid-spacing in one time step. (Otherwise, certain odd artifacts may appear.)

IV. REACTIONS (metamorphism, phase changes)

One MAJOR advantage of a numerical method like F-D is that you can customize it by adding any effect you want!

The temperatures of rocks can be affected by metamorphic reactions or phase changes (e.g., melting, or solid-solid phase changes at high pressure). You can include all of the effects by adding some extra code that examines the temperature of each grid point at each time step, and decides whether some reaction has occurred. If it has, the temperature is adjusted accordingly, assuming an adiabatic reaction (because conduction is handled by the existing parts of your program).

In some cases, this new code will cause a bounded oscillation. For example, the adiabatic reaction to a high-pressure phase might release so much heat that T jumps up, and in the next time step, the rock recrosses the Clapeyron line and reverts to the low-P phase, but this cools the rock so much that in the next step it converts to the high-P phase, releasing so much heatSYMBOL 188 \f "Symbol"
(An irritating thing about this oscillation is that it can't be fixed by reducing SYMBOL 68 \f "Symbol"t, like most errors. Reducing SYMBOL 68 \f "Symbol"t just decreases the amount of conductive smoothing and keeps the sensible heat localized.)

A simple practical solution is to replace instantaneous reactions (occurring at a Clapeyron line in P/T space) with gradual reactions (occurring in a band of P/T space). You add another array containing a reaction-progress variable X (from 0 to 1), translate this array just as you translate the T array, update the values after each translation, and add the sensible heat gradually to the T array as this variable increases. That allows time for the sensible heat to diffuse through a reasonable volume, preventing the artificial oscillation. (Warning: the problem may appear fixed, but reappear later when you reduce SYMBOL 68 \f "Symbol"t. Therefore, it is a good idea if your program explicitly looks for temperature oscillations, and warns you in English when they are found!)

 c:\work\classes\ess134\f-d.doc4

_931786717

_931786772

_931786799

_931786818

_931786828

_931786786

_931786745

_931786760

_931786725

_931786690

_931786703

_931786654

