Appendix I: Algorithm of NeoKinema
by Peter Bird, UCLA, 2005

Overview

Geodetic studies over the past century have shbatrvelocities of benchmarks near the
most active faults are not steady because of cpélelstic strain accumulation and release in
earthquakes and/or creep events. Extrapolatisgdisult to faults with mean slip rates of 1
mm/a or less, we expect that velocities adjacestith faults might vary significantly if
averaged over less than*M@ars. At longer time-scales, plate tectonic n®Hased on marine
magnetic anomalies show that large plates charagevélocities on a scale of 19ears due to
the birth and death of spreading ridges, subdudiaigs, and other plate-boundary faults. The
smaller plates within complex "orogen®&ifd, 2003] might be expected to show important
velocity variations on a scale oflgears because less relative advection of fautlisésied to
significantly change the shape of a small platewewer, it is reasonable to expect that, if
surface velocities could be measured over scal@§*db 1 years, they would be stable in most
regions. This is the "long-term average" velo@igyd that we seek to estimate with program
NeoKinema.

To first order, the strain rates and fault sliggsabbtained from derivatives of the long-
term average velocity field should be free of eétastrain contributions, and result instead from
permanent strain mechanisms such as frictionahglish the upper crust and dislocation creep in
the lower crust. Therefore, it is also reasonébkexpect that long-term average strain rates in
the upper lithosphere should be proportional t@iterm average seismic moment production (in
N m!s?). The necessary conversion factors are the elsistiar modulus (which is well known)
and the "coupled lithosphere thickness" contrilutmmseismicity, which has been estimated by
Bird & Kagan [2004] based on 2Bcentury seismicity. Thus, results frdveoKinema lead
directly to stationary models of long-term averagemicity and seismic hazard. Stationary
models have value in the design of zoning and mgldode ordinances, which cannot be

expected to change rapidly in response to time+udgr® seismic hazard forecasts. Furthermore,



better knowledge of the long-term average seisynmap contributes to basic science studies of
the time-dependence of seismicity by defining adyaocess relative to which positive and
negative seismicity anomalies of?10 1G year duration can be measured, using existing
catalogs supplemented by historical records anteatogy.

Models of the long-term average velocity field deneither "forward,” "dynamic" models

(based on the momentum equation, and assumed gredlor "inverse," "kinematic" models
(based on observations, with additional constramtacrease realism). Dynamic models
contribute more to theoretical understanding ofaieophysics, because suites of model
experiments can elucidate the effects of rheolagit boundary parameters. But kinematic
models are more reliable estimators of seismicrdabecause they fit available data better in
particular actual casetNeoKinema is kinematic. The data sets it fits include (&pdetic data
from time/space windows without major earthquak2s|ong-term average fault slip rates from
geologic data; (3) principal stress directions; &f)dvelocity boundary conditions from plate
tectonic models. The assumptions it employs tcemse realism are (a) microplate tectonics:
anelastic strain rates in unfaulted continuum Bftteere should be minimized; and (b) isotropy:
principal strain rate axes in unfaulted continuttimolsphere should coincide in direction with
principal stress directions from data.
Objective Function

In many inverse problems the data are discret@usecthey come from measurements at
distinct points. Assume that all data that comstvalocity or strain rate at particular points bav
been transformed to scalar rate estimate¢Subscriptk =1,..., K identifies the scalar datum,
which is typically one horizontal component of letegm average velocity derived from a

geodetic benchmark velocity.) Let the correspogdicalar rate predictions derived from the

velocity field of the model be calleg, . Assume that each scalar ratehas an uncertainty that

can be approximated by a Gaussian probabilityidigion with standard deviatioar, , and

assume temporarily that the errors in these ratesdependent. Then the natural logarithm of



the density of the joint probability that the modetches all the data is formed from the
individual probability densitiesi{) as:
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and the part of this which is variable (with redgecchanges in the model) is the familiar

weighted-squares-of-prediction-errors criterion
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which is to be maximized.

However, in theNeoKinema algorithm we also consider some constraints (ggolslip
rates) to apply all along the trace of a fault, atiter constraints (minimization of strain rategan
isostropy) to apply all across the area of unfaldtentinuum. There is no natural way of
"counting” these constraints as discrete datageu@o-data), and no natural, "correct" weighting

of these constraints against point data in theabibge function. Instead, we leave this choice to

the user of the program, by introducing parametelied "reference lengtht’, and "reference

area" A, which are used to maintain non-dimensionality geaeralized objective function that

includes both line- and area-integraIS'
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wherem=1,...,M enumerates the target ratesassociated with fault-slip degrees of freedom,

andn=1,2,3 enumerates the 3 target ratesassociated with the 3 components of strain-rates a

each continuum point. The first term of this olijge function includes the target velocities
derived from geodetic benchmark-velocity data,abeond term includes the targets derived
from geologic slip-rate data, and the third terriudes the targets derived from stress-direction
data (and the stiff microplate assumption). ThenefL, and A, can be considered as
dimensional tuning parameters to be adjusted,ilyand-error or systematic search, to equalize

the fit of NeoKinema models to all 3 classes of data. If a calculatsoperformed with no



geodetic datal = 0), then the solution will depend only on a singlaehsional tuning

parameter: the ratid /L, .

Finite Element Approximation

It is only necessary to estimate the horizontal gonents of the long-term average
velocity, and only necessary to do this on the gtfarsurface. Therefore, we divide the area of
the model into spherical-triangle finite elemerksiig & Bird, 1995] and solve for the
horizontal components of velocity at each nodend-term average velocities at other points are
determined by interpolation, and long-term anetastiain rates are determined by
differentiation. (Where these elements are srttadl surface of the sphere is locally almost flat,
and the nodal functions of such elements are Mesedo those of plane-triangle "constant-
strain” finite elements.)

On the surface of a spherical planet with radRudefine a coordinate system of
colatitude 6) measured southward from the North Pole, and tadgi ) measured eastward
from the prime meridian. The unknowns in each vigfasmolution are the horizontakt
components ang-components of the velocity of the surface. Allgpoted ratesp, , p,,, p, can
be expressed as different linear combinations @¥tiocity components (Southward) angv

(Eastward) at each of tldenodes of a finite element grid:

J
P, :Ck+2(fkjvj +gkjwj). (4)
=1

(There are also 2 similar equations whiere replaced byn or n; however, in these equations the
coefficients f ,, g,,, f,, g, are considered to be functions of position alofapit trace or

across the model area, rather than constants.)

System of Linearized Equations

With these linear relations between nodal velogitied model prediction§” is a
quadratic form in the nodal-velocity-component esly; andw;, so it is maximized by finding

the single stationary point in multi-dimensionalogity space where
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Algebraically, this leads to aJ x 2J linear system, which can be thought of as beingtmamed

into 4 submatrices times two subvectors equalirgggubvectors:
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(However, in practice it is efficient to reordeettow equations so that the unknown velocity
components appear in the ordgiw,,v,,w,,...,v; \w;. If we then renumber the nodes so as to
minimize the maximum difference between indiceaades connected by one finite element, the
linear system will have reduced bandwidth and aaeddved in less computer time and
memory.)
Boundary Conditions

The equations stated above could be singular ialblsence of boundary conditions, if
there are no geodetic data, or if the geodeticougioeference frame is free-floating. (This latte
case will be discussed below.) In such cases, solge(s) of the model must be fixed (or moved
in a predetermined way) to define a velocity refieeeframe. To implement a velocity boundary

condition, we replace the row equations that steeS" is stationary (with respect to variations



in those nodal velocity components) with simplenatpns stating the desired values of these
components. (Depending on the type of solver useaqy also be desirable to weight these
constraint equations so that their coefficientscamparable to the eigenvalues of the
unmodified matrix of coefficients.)

Even if the system is not singular, applicatiomofindary conditions will often be
desirable, to take advantage of the velocity infaron provided by plate tectonic models
describing the relatively rigid portions of thedarplates that lie outside orogens.

Only velocity boundary conditions are possiblé&NeoKinema. Stress is described only by
orientation (but not magnitude) within the modefhdon, so "stress" (traction) boundary
conditions are not available. However, if no vépboundary condition is prescribed along a
model edge, the effects will be similar to thosétaiction-free” boundary conditions found in
dynamic models. Such treatment would be apprapiidhe model domain were limited to the
overriding plate in a subduction zone, for that pathe model boundary running along the

trench.

Continuum Stiffness: the Microplate Constraint
An essential context for all the fault-related gept data showing locally intense
straining is that they should compete withaapriori assumption that in other places the strain-
rate is close to zero. An appropriate formalisioiassign a zero target strain-rate, with a
statistical uncertainty. A larger standard deviatould be attached to this null target rate in
complex or poorly-studied regions where unknowrt$annight be buried and overlooked.
Referring to equation (3) above, the firgt{1) continuum constraint is expressed by:
(P _ P2 Ein+ by £y T i ©)
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where 1 is a scalar measure (such as the mean absolute ofahe largest principal value) of a

typical continuum strain-rate (is™) in a particular application. One approach isgtmateu

from the off-fault seismicity of the model regiaha catalog with accurate locations is available.

Alternatively, NeoKinema can be run repeatedly to estimateby the boot-strap method. We



have found that (in realistic, non-degenerate nois) the strain rate of the continuum is largely
determined by fault incompatibilities, fault dis¢owities, discrepancies between adjacent fault

slip rates, and/or discrepancies between geologigaodetic data. Thus it often depends only

weakly on theu initially assumed, and convergence is rapid #pdal continuum strain-rate
from the last calculation is input as the new vaitig: .

NeoKinema also accepts distinct (positive) values forin each finite element, if desired.
If any these values are zero or are not providelgfault value read from the input parameter file
is used in that element.

The particular scalar function of the strain raesor that is used in (8) has the effect of
causing unfaulted areas to behave as Newtoniaougssheets of lithosphere in a state of plane
stress. Thé&leoKinema algorithm will result in velocities that minimizke area integral of
squared strain-rates for the unfaulted elemenisjghexactly the result one would obtain by
deriving a dynamic FE algorithm from the momentwgnation (in the absence of horizontal
boundary tractions or body forces), adopting adinm@eology, and solving for velocity with
inhomogeneous boundary conditions.

The 2x 2 strain-rate tenso¥ on the spherical surface is calculated by summjpagial
derivatives of nodal functions multipled by nodalacities. The nodal functions that we use
were introduced bitong & Bird [1995] and shown to satisfy the requirements oizomtality,
continuity, and completeness:
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In this notation, the superscripdn the vector nodal functioﬁxi or nodal function component

ij’y identifies the node that has unit velocity (aH@tnodes having zero velocity in this

particular nodal function). Subscript= iddicates the nodal function associated with unit
southward velocity; subscriptx = 2indicates the nodal function associated with aagtward
velocityw. Subscripty = lindicates the southward 6rcomponent of the vector nodal function

Gx' , and subscripy = 2ndicates the eastward @icomponent.
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In practice, area integrals are treated as theadduntegrals over individual (unfaulted) finite
elements; within each element, integrals are peréornumerically using 7 Gauss points with
associated weight&ienkiewicz, 1977]. Continuum strain-rate will also be miraedl in

elements which contain faults, but this will betpzra different algorithm, described below.

Use of Stress Directions: the Isotropy Constraint

One principal stress direction must always be petpelar to the free surface of a planet,
or approximately vertical. Thus, the orientatiorttué stress tensor is well described by the
azimuth (; measured clockwise from North) of the most-corapiee horizontal principal stress
(54,)- These directions are tabulated in data sets asithe World Stress Map.

Unfortunately, these data are very noisy. Variancgress direction does not approach
zero as pairs of data points are selected closeclaser together. Another problem is that the
uncertainties assigned to individual directionsraostly generic estimates, not the result of
repeated measurements at one point. A third proidehat there are spatial gaps in the data
sets, such that many finite elements in a fine god't contain any data. To handle all these
problems, we first interpolate observed stressctors to the center of each finite element,

using an algorithm bRird & Li [1996]. Specifically, we use the algorithm vatiarith pre-

averaging of clustered data. This algorithm presidn estimatajy , of the standard deviation

(in radians) of the azimuthof the interpolated directiodr,,. The uncertaintiesy from this



pre-clustering algorithm are larger than those ftbeindependent-data variant of the algorithm,
but we believe these larger uncertainties to beemenlistic.

To use this information about stresfNeoKinema models, we approximate the
lithosphere as horizontally isotropic, so thatphi@cipal directions of the strain rate tensor in
unfaulted continuum elements should be the santieegsrincipal directions of stress. There may
be an error of up to 3sssociated with this assumption if and whereithedphere contains
unrecognized weak faults. Even so, the solutiofido& more accurate and reasonable than ones
which ignore stress data and leave the orientabboentinuum strain rates completely
unconstrained. (Unconstrained models often shostsal simple-shear straining adjacent to
dextral strike-slip faults, and extensional contimustraining adjacent to thrust faults. Such

local reversals of stress are implausible and shbelsuppressed for a realistic simulation.)

Once we know the azimuth @f,,,, we use this as the direction of a new local tuorial

axis &, and also define a perpendicular horizontal gxigright-handedz x 3 = ). In these

coordinates, the requirement thiatis the most-compressive horizontal principal stiraite
direction can be stated in two equationg; = arfle,, <£,,. In terms of the global

coordinate system, the former constraint, whidimésn = 2 constraint in (3), becomes
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if we usec, =0 and a target ratg, =0. It is necessary to decide what standard deviatipto

(13)

associate with this constraigg, = , 8ince we have transformed the constraint from one
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concerning an angle to one concerning a straine@tgponent. When the calculation is first
started and no strain-rates are known, a purelyranp small strain rate uncertainty } must be

assigned ag,. However, once strain rate estimates are availabin the previous iteration of

the solution, it is better to use

2 1. :
c,= 2(57)\/S§¢ +:‘r($&9 —&,, )2 : (14)

This requires that the velocity solution be itedate
The latter requirement was the inequaliy <¢,, . During the later iterations of the

solution,NeoKinema evaluates the strain ratég, and¢ ,, to see if this is true. If not, then in

future iterationgNeoKinema imposes an additional continuum constraimg 3 in (3), that

€4 =€, +¢&, Whered is a small (positive) strain rate difference whishst be chosen as an

input parameter. In terms of the global coordinata@s becomes

(‘éw — &4 )cosz) +28,,sin@2y) =S . (15)
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andc, =0 if we create the target rate= £. The same value af is used to set the standard
deviation for this constraint as, = (0.83)%, so that the implied Gaussian distribution of
(€4 —£,,) (required by our weighted least-squares methallppproximate the desired
Heaviside distribution for small positive values.

In cases where stress-direction data are veryeparaay be desirable or necessary to

use active fault segments as additional stresstéireindicators, assuming,, perpendicular to

thrusts,etc. Such an option has been providedNeoKinema, but it should be used with caution.

10



11

The difficulty is that only the first phase of menent on a fault should be used to indicate stress,
because in later tectonic phases the fault renzainsherited plane of weakness, even though
stress fields may rotate. Yet, one can rarelydstam that all the faults in a given problem area

are new.

Use of Fault Slip Rate Data

NeoKinema solves for only the horizontal components of vitjoat the surface, so a fault
is treated as a surface discontinuity in horizongdbcity. The offset-rate parameter of greatest
interest is the heave rate, which is the horizocadahponent of the slip rate. For convenience,
and to reduce errors, 7 fault types have been pnede so that all fault offset rates can be
entered with positive numbers (and in conventiamats of mm/a). For the first 5 fault types,
the heave rate is directly specified. Types Rlaffdr Right-lateral and Left-lateral,
respectively) have heave-rate vectors paralléhiédault trace. Type D (for Divergent or
Detachment) has heave-rate at right angles taalee,twith an opening or spreading sense, and
is used to describe mid-ocean spreading ridgesalogle detachment faults, convex-upward
“rolling-hinge” detachment faults, concave-upwasdric normal faults, and rotating sets of
planar “bookshelf’ normal faults. Type P (for tetdPlate, or naPpe) has heave-rate at right
angles to the trace, with a shortening or convdrgense. Type S (for Subduction) is treated the
same as type P withideoKinema, but the special fault type S is passed to outjas for other
programs (such dsong_Term_ Seismicity, which treats subduction zones differently frorhest
convergent boundaries). For the 2 remaining fgpks, the throw rate (vertical component of
slip rate) is entered: type T represents planaudikr and type N represents planar Normal faults.
For these last 2 types, a fault dip must be asswsnekatiNeoKinema can convert throw rates to
heave rates. The dip angles currently programme@@ for Thrusts, and 55for Normal
faults, which are consistent with the dips assumebe seismicity calibration study Bfrd &

Kagan [2004]. (Other dips could be used, but there @wdnd risk of confusion and inconsistency

11
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if NeoKinema output were used as inputltong_Term_Seismicity, which assumes tHg&ird &
Kagan dip values.)

Geologic studies of offset surfaces and/or offsetgng points, supported by radiometric
or stratigraphic dating, establish long-term averaffset rates (slip rates and/or throw rates
and/or heave rates) for many faults. In a few gasese rates are determined in a specific small
region, and could be treated as point constrairnts kmown Gaussian probability density
functions. However, most cases are more diffidalt:Some offsets are so large that the rate has
to be interpreted as the mean rate between thet @itsrcing points, rather than the rate at a
point. (b) Many studies establish only upper antbaer bounds on the slip rate, not a preferred
value. Then, rate constraints from different lamas have to be merged to estimate a preferred
slip rate, and its residual uncertainty, for theltfas a whole. (c) Rates determined over time
windows of less than f@ears, or more than $@ears, must be treated with caution, as rates are
expected to be less stable outside this time wind@)y Many slip-rates quoted in the literature
are second- or third-hand restatements of tentedites that have not been peer-reviewed; these
must also be treated with caution. (e) Some astiwbio compiled offset rates have assigned
uncertainties to be a fixed fraction of the estedlatlip rate; such uncertainties are often
seriously underestimated and in need of revision.

For all these reasons, we decided that useleainema should merge available offset
rate information for each fault, by the editoriabpess of their choice, and then input only one

preferred rater(,) and the standard deviatioar () best appromating the actual PDF, for each

component (parallel and perpendicular) of the heateeof each fault. If firm lower and upper
bounds ¢ andr™, respectively) are available on the rate, tng—:ﬁ(r") +r® )/2 and

on=(r"- r"’)/4 might be reasonable choices. If no informatioavailable, one can set
r.=0 ando,, —> «, which leaves that fault free to slip in any wayoptimizes the fit to other

types of data. Long faults (like the San Andremsich have multiple intersections with other

faults are best treated by dividing them into sedithat have distinct rates and uncertainties.

12
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Fault slip rate is, in general, a two-componentaeclf both the dip-slip and the strike-
slip components of the slip rate are knoNeoKinema treats these as two distinct scalar
constraints along the same fault trace. When tha\ydip-slip rate is knowmeoKinema
provides an option to permit limited strike-slipproportion to the amount of dip-slip. (This is
useful because otherwise a thrust fault with a derrace could not slip without deforming its
hanging wall and/or footwall, and such deformaticould be strongly resisted by the continuum
stiffness constraint discussed above.) There ison@sponding provision for limited dip-slip on
known strike-slip faults, because strike-slip fawdte modeled as vertically-dipping, and thus any
dip-slip component would not affect the horizontelocity components estimated by
NeoKinema.

When a fault is long enough to cross several figiggnentsNeoKinema attempts to
impose the same offset rate in all elements. drcdse of rigid-microplate tectonics, where each
fault connects to other faults at triple-junctiotiss method is reasonably accurate. (The only
difficulty occurs where there are rapid relativéatmons of adjacent microplates, but this can be
handled by segmenting the faults and varying thgetaates along the strike of each fault.) The
other end-member is the case where no faults corimegtcall terminate within the domain. In
that case, each fault might be expected (on this basrack theory for linear materials) to have
an ellipsoidal profile of slip rate versus lengBuch “elliptical” faults would have a mean offset
rate which is only 79%m(4) of their maximum offset rate. ThudgoKinema might overstate
fault-related strain-rates by 27% in some casesevaailts do not connect and where the
geologic offset rates reported are all maxima albweg respective traces. However, if the
geologic offset rates were determined at randomtpaif convenience, then once again no
systematic error is expected.

The simplest way to impose fault slip rates wowddduse each offset rate as a constraint
on the relative velocities of adjacent nodes orogfip sides of the fault. This approach would
require a finite element grid that conforms tofailllt traces, providing matched nodes on

opposite sides of each fault, and triple nodeault fntersections. However, the number of faults

13
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in many applications is so great that such custechgrids are very time-consuming to prepare;
they may also require unreasonable amounts of ctanpme and memory to solve. Thus, we
have developed a more general approach, loosedglmasthe substructuring method from
engineering finite elements. Our new method allamg number of faults to cross a given finite
element.

For each finite element containing one or moretfaates, there are four steps: (a) Form
the target strain-rate tensor for that elemenhastm of the strain-rate tensors implied by al th
active fault segments cutting that element; (bthve matrix of covariances of the strain-rate
components in that element as the sum of the cavegs added by all the active fault segments,
plus the small covariance of the strain-rate indbwtinuum around them; (c) Diagonalize the
covariance matrix to find its three principal aX@sstrain-rate space) along which the
uncertainties are independent, and rotate thettangen-rates into this new coordinate system;
(d) Add these 3 independent targets as scalamdtit&known uncertainties in the global system
of equations.

The strain-rate tensor in the horizontal plafiejs a second-rank tensor of size22We
simplify the notation by treating the three indegemt components of the strain-rate tensor
(€40 = Ens €05 = 14 = Egy) AS @ ONE-subscript vectar, ( q=1,2,3), permitting us to write
the covariance of strain-rates as@ 3natrix. If all the active fault segments that @aten part-
way) through one finite element are numberedl, ..., Z, then we express the target strain-rate

vector in the element as a linear combination eirtacalar slip-rates,:

Z
&= Hys: q=123. (18)
z=1

The covariance matrix of the strain-rate component®mposed of two parts: the continuum

compliance common to all parts of the lithospheee(“Continuum Stiffness: the Microplate
Constraint”), and the terms arising from the staddgeviationso's, of the scalar slip-rates, :
4/3 0 -23 ,
V=u’| 0 1 0 |+>(5s)[HH,] (19)
—2/3 0 43| *
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To find HZ (the partial derivative of element strain-ratehaigspect to slip-rate of one

active fault), we impose a rule that no node magkactly on a fault. Also, we incrementally
straighten the trace of any fault that crosses#me element boundary more than once, until the

number of crossings is reduced to 1 or 0. Therh) &mdt segment (with its projected extensions,

if necessary) must separate one node of the elenoentthe other two. Let, be the index
number of the isolated node. If nodgis on the right side of the fault segment (whesking
along its azimutly,, measured clockwise from North), then we defireevariabler, as +1;
otherwise, it is-1. Let x, be the fraction of the width of the element tisatut by the fault
segmentO<x, <1.

In the case of a strike-slip fault, the scalar-shife s, is defined as the right-lateral heave

rate. (Left-lateral rates are negative right-ldtestes.) Then

1 20 .
cosy, — siny,
0 7
g, e | 1 i cosy, Lo sing,  Lwp o Bz Gii 057, ~Carsing, | |(20a)
R |2 d sind 3dp sing 0 a0 tan®
s cosy, &Gy, siny, +Gf; cosy, —Gy; siny,
ap sing ap sing tané

In the case of dip-slip faulting, it is most coniast to defines, as the net horizontal extension

rate perpendicular to the fault trace. (Thrustsgonsidered to be negative extension.) In the

case of detachment faulting, net horizontal exteng the distance from the breakaway fault in

the foot-wall to the tip of the hanging-wall (resbructed if necessary), regardless of whether the

fault slipped at a low angle or, alternativelyppked at a high angle and then rotated during

further extension. In the more common case of tpfaulting without horizontal-axis rotation

of foot-wall or hanging-wall, net horizontal extéms rate is the relative vertical offset (throw)

rate times the cotangent of the fault dip. Our @mtion is that normal and detachment faulting

have positives, and thrust faults have negative values. Then,
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By o By
siny, + cosy,,
20 V2 % Y 2
H, MK, | 1 & si.n;/Z ZeH cosy, Ze siny, + b cosy, _ Gy siny, +Gy;, cosy, |.(20b)
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The next step is to find the 3 positive eigenvalugs h= 12_3) of V and their

corresponding unit eigenvector (). These eigenvectors indicate strain-rate patehuse

3
uncertainties are uncorrelated and independent;ithee target amplitudes af = Zéthq and

g=1

standard deviations af, :\/Z , respectively. Each of the three targets is noposed as a

scalar datum in the global system of equations.cbineesponding coefficients of the nodal

velocities are

1 oG, 1 Csogé’Gl”l+0”G‘l,2_ G, oG, Gy, Ahl

"Rl B 2 ap B tand |’ ap tar || "™
s (21)

. . . . . o9l A

) :l 5szl } CSO9 é’Gé,l_i_ é’GIZ,Z_ G]2,2 é’G]Z,Z+ GJ2,1 Ahl

"Rl N 2 3 50 tand )’ ap  tard A“2

- h3

(Note thatm now equal$ plus an integer that counts how many other fal#ted target rates

have previously been incorporated into the lingatesn.)

Now, the substructuring method in engineering éitements (our guiding metaphor)
involves three steps: (1) Condense the stiffneslseogubstructure into a simpler element that
can represent it; (2) Compute the global soluteord (3) Perfom a local solution to distribute
displacements and strains within the substructéfghough our method is kinematic rather than
dynamic, there are close parallels. Above, weriesg how the target strain rates (and their

uncertainties) from an arbitrary number of faules @duced to an equivalent 3-DOF model.

Below, we show how a local maximume-likelihood sa@uatdistributes the total strain rate into its

component parts.
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Once the global velocity solution has been fold@hKinema performs a local
optimization calculation within each faulting elema¢o find thepredicted (model) ratesp, at

which each fault¢=1,...,Z) is slipping, as well as the residual strain-rgfewhich is due to

deformation of the continuum around the faults tlle enumeration &, a fault with both dip-
slip and strike-slip components is consideredas faults" that happen to have the same trace.)
The total strain-rate of the element must be time stithe continuum and the fault contributions:

A
Ee+Y Hup, =4, (23)

z=1

This problem is different from the global probleechuse the, vector is now known.

Because of this constraint, it is convenient tothgelLagrange multiplier method with three

temporary weight variables {, ¢,, ¢;). We define the local objective function (in orlersent)

that is to be optimized as:

2 L (p,-s) A(&P+eEs+ed+s) & (L 2 .
SmE— —z 4 r4 _ _ [ H _ 24
; LO (582)2 lAb ﬂZ ;gq 8q + ; zq pZ gq ( )

whereL, is the length of each fault segmeis, is the standard deviation of its offset rate

(according to the input data), aAds the area of the element. To find a local soluthat has all
fault rates as close as possible to their goaldewltine continuum strain-rate is close to zero, and
the total strain-rate is correct, we find the stadiry point ofS” with respect to variations in the
Z values ofp,, the 3 values off, and the 3 values af; jointly, leading to a small linear

system of equations with a coefficient matrix tisateal symmetric indefinite.

Once all local substructure solutions are complet@ average offset rate for each fault is
also computed, as the average of the rates all the elements the fault passes through, with
averaging weights proportional to the segment lengBoth measures of predicted fault offset
rate are saved to files, and our plotting softwll@KineMap) can display either the average or

the element-specific model offset rate components.
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Use of Geodetic Data

Equations (1) through (3) already provide for theorporation of geodetic velocity
components at benchmarks, but only in certain idas¢s. Three practical difficulties often
arise: (a) The two velocity components at one berack and/or the velocities at different
benchmarks have correlated uncertainties. (b)rélagion between the velocity reference frame
for the geodetic velocities and that of the velpbibundary conditions may be uncertain. (This
occurs when all, or almost all, of the benchmasdedun the geodetic velocity solution are
located within an orogen, and few or none are dattie orogen on rigid plates.) (c) Geodetic
velocities at benchmarks near active faults da@tesent long-term average velocities because
the faults remain locked, or else suddenly slipgbge amounts, during the period of observation.

Correlated uncertainties in geodetic velocity congyus (problem a) violate the
assumption of independence used to obtain the siotgéctive function in (2). Therefore,
coordinates must be rotated to new variable spatteecsame dimensionality, in which the
uncertainties are independent, and prediction €sbould be evaluated in those new

coordinates. It is well-known that (2) should bplaced by:

S’E—%ii(pk—rk)Njk(pj—rj) (25)

j=1 k=1
where the "normal matrixN is the inverse of the covariance matgixof the observed velocity
components . SinceC is a positive-definite matrix, and (25) is stiljgadratic form like (2),
this presents no problems except for expansioasgebra, computational effort, and computer
memory. We see from (4) above that model predistip are each sums of 6 terms (concerning
the 2 horizontal velocity components at each ofm@des in the finite element surrounding the
benchmark). After extensive algebra based on(@%)tted here) these nodal degrees of
freedom become linked to those of any other fialeanent containing a geodetic benchmark
(whose uncertainties are correlated with thoséefitst). If the correlations are only locald,,
between the N-S and E-W velocity components at backhmark) thei€ is block-diagonal,

and N is block-diagonal, and the linear system (6NebKinema retains any banded nature that
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may have been achieved by the intelligent ordesingelocity degrees of freedom. However, if

C is a general full matrix, then the resulting linegstem is no longer banded, and both
computer memory and solution time burdens incre@sethis case, we see the important benefit
of working in only 2 space dimensions on the sw@faicthe planet, where 5,000 to 10,000 nodes,
or 10,000 to 20,000 degrees of freedom, still peammeasonably fine grid of nodes and
elements.)

If the velocity reference frame of the geodetitada unclear (problem b above), then this
is handled ifNeoKinema by adding 3 large eigenvalues@ corresponding to eigenvectors
representing uniform steady rotations of the emg@edetic network around each of 3 orthogonal
axes through the center of the planet. In the mbmatrix N , the corresponding (inverted)
eigenvalues become nearly zero, mapping any systepradiction error in the velocity
reference frame to infinitesimal contributions e bbjective function§& and S". (Note that,
in this case, the specification of velocity bourydawnditions at the model edges is mandatory.)
However, the condition number &f should not be made too large, or the qualityf it
numerical inverseN will suffer. In the current version &feoKinema we add rotational
eigenvalues with magnitude ¥Ma to C, and use 64-bit arithmetic in the inversion toairt
N.

The third problem (c above) is geodetic benchmaltse to faults, at which the observed
velocity is not the long-term average. Before ggimese velocities as constraints in the global
optimization,NeoKinema corrects them to estimated long-term average itededy adding the
estimated long-term average rates of coseismidatisment due to all faults in the model.
These coseismic displacements are computed usalgtiarsolutions byMansinha & Smylie
[1967, 1971] for the effects of rectangular patobiegniform dislocation in a uniform elastic
halfspace. We assume uniform Poisson's ratio25 i the halfspace. We fix uniform upper
(shallow) and lower (deep) extents of the dislazapatches with input parameters, for example
1 km and 12 km, respectively, for most crustaltgwut 14 km and 40 km, respectively, for

subduction zonedBjrd & Kagan, 2004]. We provide two alternate methods for deteing the
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long-term average slip rate of the faults (for msgs of correcting the geodetic velocities): a
conservative "geologic" estimate using the datas&ult slip rates which are the targgis for
NeoKinema, or a "self-consistent” estimate in which faulp shtes are taken from the previous
iteration of the solution. The self-consistent noet is preferred unless it leads to an instability.

If any fault is creeping steadily (such as thet@drsegment of the San Andreas fault in
California), this fault is flagged with a logicakgch on input, and corrections to geodetic
velocities at benchmarks will not include any cesgc contribution from that fault. We do not
currently have any algorithm to handle intermedcases of combined fault creep and coseismic
offset on the same fault.

The underlying assumption of this correction mdtlsthat no important earthquakes
have occurred during the time window of geodetiadallection. If they have, then we prefer to
edit out (exclude) geodetic velocities affectedtmse earthquakes. This can be done by
redetermining the velocities using only preseisatiservations, or by simply omitting such
benchmarks.

Experience has shown that it is also necessaydinde benchmarks very close to fast-
moving faults, regardless of their seismic histéoy,three reasons. First, errors in digitizing
fault traces occasionally cause a benchmark tddmeg (in the virtual world of thideoKinema
model) on the wrong side of a fault. This causesrairely spurious prediction error equal to
100% of the slip rate, which will systematicallyabiany weighted-least-squares algorithm.
Second, if the benchmark is located closer to dé trace than the nearest nodes, the
interpolated model velocity, at that benchmark will be skewed by nodal-functiderpolation
toward the velocity of the adjacent block; sucloesican be almost as large. Third, we have
found that thevlansinha & Smylie dislocation solutions are ill-conditioned (for Fan-based
evaluation) at points very close to the edges @fdiklocation patches, and give noisy
corrections. For all these reasons, we apply aatedndeletion of benchmarks less than 2 km
from fast-moving faults as a data pre-processiag.sConsistent with this guideline, we

recommend hand-editing of the finite element goidreate "corridors” of narrow elements along
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fast-moving faults, with width not more than 4 kifHowever, this editing is not necessary along
minor faults whose slip rates are expected to Ipgpewable to, or less than, the uncertainties in

benchmark velocities.)

Iterative Improvement

At 4 points in the algorithm described above, wermed to the use of model estimates
from a previous iteration to improve the solutiohll of these iterations are combined and
performed simultaneously, with 10 to 40 iteratipes run. Here we discuss some details of this
iteration which can affect the stability and premisof NeoKinema solutions if not properly
handled.

While the interpolation of principal stress directs to all finite elements is only
performed once, the conversion of the resultinghath uncertaintyy to the strain rate
uncertaintyo, in equation (14) requires knowledge of the strate, and is iterated. &y is
small (because the stress direction is well-knoavrg) the strain rate also becomes small in the
same element, them, can become very small, leading to unreasonabielalgenvalues and an
undesirably large condition number in the globa¢dr system (6). This causes random
numerical noise to propagate through the solvéneéanferred velocities of all nodes. To keep

such random numerical fluctuations down to an aedsae level, we limit the eigenvalues of the
linear system on the high side by arbitrarily redgdahe weight on the=2 (¢,, =0)

constraint at such elements. This reduction irghteng occurs whewr, <& .

The other component of enforcing principle strateraxes for unfaulted continuum
elements is to check whether the sense of stre@ngaorrect. Equations (15)-(17) are employed
only in cases of incorrect sense (such as N-S sixtenvhere there should be N-S compression).
Experience shows, however, that a bounded osoflatf period 2 (“recidivism”) often occurs if
the constraint is removed after an iteration r@sglin the desired sense of strain rate. Therefore
NeoKinema never removes this constraint from any elementr&/lidhas once been imposed. To

avoid applying the constraint to more elements thegessary, the program postpones adding
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this constraint at any element until the lattef b&the set of planned iterations. This allows
other iterated components of the solution to stabibefore this irreversible change is imposed.

In the section on use of fault slip rate data,aswoted that an option is provided to allow
limited amounts of strike-slip on nominally dipgshaults for which no strike-slip component
data are available. The assumed uncertaintyikesstip rate is proportional to the current dip-
slip rate, so that the slip vector of the nomindily-slip fault is confined to lie within a spead
angle about the direction normal to the trace. fEleeback between dip-slip and strike-slip
during iteration can lead to a bounded oscillabbperiod 2 for certain fault geometries. To
suppress this, the update of the uncertainty ikesslip rate is slightly damped, by always
averaging the new uncertainty with the previouseutainty.

Finally, it was mentioned that the correction ofetved geodetic velocities to estimated
long-term average velocities requires knowledgaolt slip rates. Where the velocity of a
geodetic benchmark is unusually sensitive to tiperates of adjacent faulte.g., a benchmark
above two shallow-dipping conjugate thrust faulte3 feedback during iteration can combine
with errors in the elastic dislocation correctiorcause an unbounded, exponentially-growing
instability. NeoKinema provides two alternative remedies: If the “selfisistent” current fault
slip rates are used for the geodetic correctidres) thanges in those fault rates are slightly
damped (for this purpose only) by averaging each na¢e with the previous rate. In case this
might not be sufficient for stability, another aptiis provided to use the “conservative”
adjustment of geodetic velocities which is basedhput fault slip rate targets, rather than
current model rates.

With these precautiondleoKinema solutions typically converge to RMS velocity
changes (between adjacent iterations) of @Dthe overall RMS velocity, or better. This is
acceptable for purposes of seismic hazard estimatide believe that most of the residual noise
is due to numerical error in the solution of linegstems, which potentially could be further
reduced with 64-bit arithmetic, or tighter congttaion the range of eigenvalues of the

coefficient matrix in the linear system.

22



23

Idealized Test Cases Performed

Many finite element grids used for testing overtllag North pole and the international date line.
Codes which contain algebraic errors in the form@itet nodal functions, strain rates, or
coefficients of the linear system will often displaregularities in these regions, but none were
seen in these tests. Note that there are somdrgps numbering of the tests described here,
because some tests (Test07, Test12), while suatdsall limited value for displaying how
NeoKinema works.

TESTO1: No input data, other than a zero veloaitgased at two boundary nodes: The solution
is static, as expected.

TESTO2: No input data, other than boundary condgiof one fixed node, and one other
boundary node that rotates around the first: Thetisa is rigid-body Eulerian rotation of the
model domain on the sphere, with internal straias@rders of magnitude less than the rotation
rate.

TESTO03: No input data, other than boundary velesitet along two opposite sides of a
rectangular domain so as to enforce quasi-unifot@nsion. (Exactly uniform extension is not
possible on a sphere.) Strain rates were quaBiumiacross the model domain, and horizontal
shortening and vertical shortening were each Hatli@rate of horizontal extension, as expected
for a uniform sheet of Newtonian-viscous matemglplane stress.”

TESTO04: Same grid and boundary conditions as itl0BesStress-direction data divide the

rectangular model domain into two provinces: orevjorce with “expecteds;, perpendicular to
boundary velocities, and an “anomalous” provincthwat, parallel to boundary velocities. In

this case, fitting the stress-direction data rezpiincreasing the strain rates in some unfaulted

continuum elements, so the result dependgonf 4 is initially small (51017 s) compared
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to the mean overall strain rate enforced by thendaty conditions (610 s1), continuum
errors are large (mean = 1043RMS = 11.365) and stress-direction errors are also large
(mean = 1.3@, RMS = 2.015), and the strain rate does not fit the specifiegiss directions
well, becaus@&leoKinema is trying hard not to exacerbate continuum ervadngh are already of

order 10c. However, when the “bootstrap method” is usecktet, to the empirical value

(5x101% s1), continuum errors become far smaller as a dressequence (mean = 1.81RMS

= 1.256) and stress errors are also improved (mean =&.BMS = 0.655) as an indirect
consequence, and tﬁ% directions align much better with specified stréssctions.

TESTO05: Same grid, boundary conditions, and 5x10® s as in Test04. No stress-direction
data. Three faults of unknown slip rate (=10* mm/a) make up a 3-segment plate boundary

with divergent, strike-slip, and divergent faulpég, respectively. The strike-slip fault is paall
to the boundary velocities, but the detachmentdgasitike at ~79to the boundary velocities.
The logical switch that allows faults to imply stsedirections is off. The option for limited
strike-slip on dip-slip faults is off. Results apeasi plate-like, except that one plate “tearsyiwa
from the boundary velocities and rotates rapidtyttfa cost of internal deformation) so as to
achieve exact, pure dip-slip on the detachmentdadrhis behavior shows the need for an
allowance for limited strike-slip components on nieatly dip-slip faults.

TESTO06: Same as Test05, except ¥ flexibility was added to the directions of thepsli
vectors of dip-slip faults (relative to the expekcterace-normal direction). Results are more
plate-like; internal deformation of plates is ngaaliminated, and the heave-rate plot shows

substantial amounts of strike-slip on the diverdaunits, added by the new option.
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TESTO8: A strike-slip fault following a small cieclon the sphere, with unknown slip-rate, is
driven indirectly by imposed velocity on one neanlogle. Essentially rigid-plate rotation is the
result. Only minor deformation occurs in the umtied continuum elements near the fault.
TESTO09: Tests the option for “type-4” velocity baany conditions, in which only the plate
affinity of each boundary node is provided\eoKinema as a 2-letter code, amNkoKinema
computes the appropriate boundary velocity froneEpbles (using the table froBird, 2003).
This also resulted in the desired quasi-rigid-plkstbavoir.

TEST10: First test incorporating geodetic data.d®la@omain fixed at only two boundary nodes.
The logical switch that lets the geodetic velocgierence frame float is off. The geodetic data
are highly artificial: approximately one benchmask finite element, with velocities computed
from a constant Euler vector with respect to tRediboundary nodes. The result is that almost
all of the model domain moves with the geodetioeiy field, except for the two corners which
were pinned by velocity boundary conditions.

TEST11: Similar to Test10, except thaf/Ma of velocity reference frame loosening is allowe
Result: All nodal velocities < 0.0004 mm/a, as etpd.

TEST13: Tests the "unlocking” correction of geocle®locities by addition of (estimated) long-
term-average coseismic slip, using the self-coasignhethod. This test uses a very artificial case
of a straight, N-S dextral fault which is lockedadoto 100 km during the period of geodetic
data collection, but slipping at unknown long-teawerage rate. The boundary conditions
enforce 50 mm/a of simple dextral shear on N-SgdarA single line of 34 geodetic
benchmarks, spaced 35 km apatrt, is placed acredauh at right angles and the interseismic
(locked-fault) velocities of these benchmarks amautated with the inverse-tangent formula to

create the artificial test data. The referenca #ge=6.2x10° m?, which is also the finite element
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size. Computed long-term average velocity, afterection of the geodetic velocities, has the
form of rigid-plate motion, as expected.

TEST14: Two slightly "harder" variants of Test18) Same test, but with inhomogeneous
boundary conditions changed to type-0 (free) alomg margin, so that geodesy is now the only
data requiring movement, and program must “discaver rigid-plate solution by iteration. It
reaches dV/V = 0.001 in 10 iterations, with dV/\tdeasing by a factor of 2 each time. (b)
Same test as 14(a) above, aftet BQation of the finite element grids and the geimodata.

Also successful; the rotation had no effect, atiigations are not orientation-dependent. This
test and the previous test show that the vertmalif strike-slip dislocation code (based on
Mansinha & Smilie, 1967) is working properly.

TESTL15: It is harder to test the dip-slip dislocatcode (based dansinha & Smilie, 1971)
because we do not have a simple analytic solutiarsé in simulating the geodetic data. Instead,
we performed a practical test over the Cascadidistilbn zone, using actual geodetic data from
the WUSC solution oBennett et al. [1999], to see if the apparently transient velesiin the
forearc could be "corrected" INeoKinema. The solution converged to dV/V = 0.0002, and
showed long-term average velocities in the Casdadearc reduced to order 3 mm/a, with a
pattern of N-S shortening, which is believed tacbaect because it agrees with stress-direction
data (not input for this test). The NE-SW shomgrthat dominated the raw geodetic velocity

solution was identified as an elastic transient im@mioved.

Note on Versions
This Appendix describdsdeoKinema version 2.0 of December 2004. The earlier version
1 used a different, less transparent method ttheatlative weights on geodetic, geologic, and

continuum constraints in the objective functiorhe$e weights were pre-programmed and
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partially dependent on the sizes of finite elemethis defect has been corrected in version 2.
(Version 1 was never published or distributed, aasiilits based on version 1 have only been
presented in the form of abstracts. We mentiandrstinction only because readers might

otherwise assume that this Appendix describesweiki)
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