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showing derivation of the viscous strain-rate term in the NeoKinema objective function. 

 

The general relation between strain-rate and deviatoric stress in viscous materials involves a 

fourth-rank tensor of viscosity coefficients.  However, we will probably never have sufficient 

data to constrain so many coefficients.  A popular and reasonable approximation is to begin 

with an assumption of isotropic viscosity.  Here we also assume that the viscous flow-law 

is also linear or “Newtonian” (as opposed to “power-law”) with respect to the magnitudes of  

strain-rates. 

According to Gerald Schubert, Donald L. Turcotte, & Peter Olson, 2001, 

Mantle Convection in the Earth and Planets, 

“viscous dissipation” (mechanical energy converted to heat, per unit volume, per unit time) is: 
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where ij  are stress components, iu  are velocity components, and jx  are Cartesian 

coordinates. 

We also use their formula for stress in an isotropic, linear-viscous fluid, 
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where ije  is a strain-rate component, ij  is a component of the Kronecker-delta matrix 

(identity matrix), 

and V  and Bk  are shear- and bulk-viscosity parameters, respectively. 

If viscous straining is the only kind of straining, and if volume is conserved, then 0kke  , 

and the right-hand term of (6.5.4) can be dropped.  Now, 
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which implies a sum over both i and j. 

Let us rotate the coordinate axes to be parallel to the principal strain-rate axes. 

Then, there are only 3 non-zero strain-rates (on the diagonal), and no rotation-rates, 

and thus 0i ju x  =  for all cases where i j  . 

Thus, we can rewrite (6.9.14) as 
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(Note that the ordering of the 3 axes is arbitrary, with no implication about relative 

magnitudes.) 

Let 3x̂  be the vertical direction.  Since the lithosphere has a traction-free upper surface 

(except for atmospheric pressure and ocean pressure) the vertical direction is a principal-stress  

and principal-strain-rate axis.  Then, using incompressibility again, replace 

33 11 22( )e e e= − +  .   

Then, in terms of the 2 horizontal principal strain-rates, 
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which is algebraically equivalent to: 
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Now, consider non-principal-axis horizontal coordinate directions ( , )  ,  

with new axis direction ̂  at an angle   (measured counterclockwise, in radians) from 1x̂  . 

Using Mohr’s circle for strain-rates, 

define 

2

e e
c

 +
=  and 

2

2

2

e e
r e

 



− 
= + 

 
 , and then we 

can express 

11e c r= −  ; 22e c r= +  (or the same with subscripts 1 & 2 reversed), and 

therefore 
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The quantity in the parentheses, in the right-hand form, is the quantity that is minimized in the 

objective function of NeoKinema.  It is discussed specifically in equation (8) of the document 

“Appendix-Algorithm of NeoKinema”. 

Note that the kinematic F-E code NeoKinema replaces the viscosity coefficient (4V  ) of this 

dynamic derivation with a coefficient of 
2(1 )  , where   (or mu_ in Fortran code) is a 

scalar 

characteristic strain-rate.  This is reasonable because the stress-equilibrium equation 

(and plate-driving mantle dynamics) lead to deviatoric stress fields which are laterally smooth; 

therefore regions of low strain-rates are regions of high viscosity, and vice versa. 

The other reason for this substitution is that   is in dimensional units (W m-3), 

but the objective function for NeoKinema requires terms that are dimensionless. 

 

 


