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showing derivation of the viscous strain-rate term in the NeoKinema objective function.

The general relation between strain-rate and deviatoric stress in viscous materials involves a
fourth-rank tensor of viscosity coefficients. However, we will probably never have sufficient
data to constrain so many coefficients. A popular and reasonable approximation is to begin
with an assumption of isotropic viscosity. Here we also assume that the viscous flow-law

is also linear or “Newtonian” (as opposed to “power-law”) with respect to the magnitudes of
strain-rates.

According to Gerald Schubert, Donald L. Turcotte, & Peter Olson, 2001,
Mantle Convection in the Earth and Planets,
“viscous dissipation” (mechanical energy converted to heat, per unit volume, per unit time) is:
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where Tij are stress components, Ui are velocity components, and Xj are Cartesian

coordinates.

We also use their formula for stress in an isotropic, linear-viscous fluid,
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where ei- is a strain-rate component, 5” is a component of the Kronecker-delta matrix

]
(identity matrix),

and V and kB are shear- and bulk-viscosity parameters, respectively.

If viscous straining is the only kind of straining, and if volume is conserved, then ekk = O ,

and the right-hand term of (6.5.4) can be dropped. Now,
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which implies a sum over both i and j.
Let us rotate the coordinate axes to be parallel to the principal strain-rate axes.

Then, there are only 3 non-zero strain-rates (on the diagonal), and no rotation-rates,
and thus aul /aXJ — O for all cases where | 7# J .

Thus, we can rewrite (6.9.14) as
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(Note that the ordering of the 3 axes is arbitrary, with no implication about relative
magnitudes.)

A
Let X3 be the vertical direction. Since the lithosphere has a traction-free upper surface

(except for atmospheric pressure and ocean pressure) the vertical direction is a principal-stress
and principal-strain-rate axis. Then, using incompressibility again, replace

€33 = _(611 + ezz) :

Then, in terms of the 2 horizontal principal strain-rates,
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which is algebraically equivalent to:
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Now, consider non-principal-axis horizontal coordinate directions (0, ¢) ,
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with new axis direction 9 at an angle a (measured counterclockwise, in radians) from Xl .

Using Mohr’s circle for strain-rates,
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¢¢ + e(9¢ , and then we

define C =

can express

ell =C—Tr ; 622 =C+Tr (or the same with subscripts 1 & 2 reversed), and

therefore

=4 ((c-r)’+(c—r)(c+r)+(c+r)?)=

4V (3¢% +1%) =4V (€, + ey, + €5 +e5 ).

The quantity in the parentheses, in the right-hand form, is the quantity that is minimized in the
objective function of NeoKinema. It is discussed specifically in equation (8) of the document
“Appendix-Algorithm of NeoKinema”.

Note that the kinematic F-E code NeoKinema replaces the viscosity coefficient (4V ) of this

2
dynamic derivation with a coefficient of (]/ﬂ ) , Where lLl (or mu_in Fortran code) is a

scalar

characteristic strain-rate. This is reasonable because the stress-equilibrium equation

(and plate-driving mantle dynamics) lead to deviatoric stress fields which are laterally smooth;
therefore regions of low strain-rates are regions of high viscosity, and vice versa.

The other reason for this substitution is that (D is in dimensional units (W m3),

but the objective function for NeoKinema requires terms that are dimensionless.



