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ABSTRACT

Geologic slip rate determinations are critical to both tectonic mod-
eling and seismic hazard evaluation. Because the slip rates of seismic 
faults are highly variable, a better target for statistical estimation is 
the long-term offset rate, which can be defi ned as the rate of one com-
ponent of the slip that would be measured between any two different 
times when fault-plane shear tractions are equal. The probability den-
sity function for the long-term offset since a particular geologic event 
is broadened by uncertainties about changes in elastic strain between 
that event and the present that are estimated from the sizes of historic 
earthquake offsets on other faults of similar type. The probability 
density function for the age of a particular geologic event may be non-
Gaussian, especially if it is determined from crosscutting relations, 
or from radiocarbon or cosmogenic-nuclide ages containing inheri-
tance. Two alternate convolution formulas relating the distributions 
for offset and age give the probability density function for long-term 
offset rate; these are computed for most published cases of dated off-
set features along active faults in California and other western states. 
After defi ning a probabilistic measure of disagreement between two 
long-term offset rate distributions measured on the same fault train (a 
contiguous piece of the trace of a fault system along which our knowl-
edge of fault geometry permits the null hypothesis of uniform long-
term offset rate), I investigate how disagreement varies with geologic 
time (difference in age of the offset features) and with publication 
type (primary, secondary, or tertiary). Patterns of disagreement sug-
gest that at least 4%–5% of offset rates in primary literature are fun-
damentally incorrect (due to, for example, failure to span the whole 
fault, undetected complex initial shapes of offset features, or faulty 
correlation in space or in geologic time) or unrepresentative (due to 
variations in offset rate along the trace). Third-hand (tertiary) litera-
ture sources have a higher error rate of ~15%. In the western United 
States, it appears that rates from offset features as old as 3 Ma can 
be averaged without introducing age-dependent bias. Offsets of older 
features can and should be used as well, but it is necessary to make 
allowance for the increased risk, rising rapidly to ~50%, that they 
are inapplicable (to neotectonics). Based on these results, best-esti-
mate combined probability density functions are computed for the 
long-term offset rates of all active faults in California and other con-
terminous western states, and described in tables using several sca-
lar measures. Among 849 active and potentially active fault trains in 
the conterminous western United States, only 48 are well constrained 
(having combined probability density functions for long-term offset 

rate in which the width of the 95% confi dence range is smaller than 
the median). Among 198 active fault sections in California, only 30 
have well-constrained rates. It appears to require approximately four 
offset features to give an even chance of achieving a well-constrained 
combined rate, and at least seven offset features to guarantee it.
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INTRODUCTION

For about half a century, geologists have attempted to measure the slip 
rates of active faults by fi nding, documenting, and dating offset features. 
Such studies helped to test the theory of plate tectonics, and they con-
tinue to provide ground truth for those who model continental tecton-
ics. These rates are also critical to estimates of future seismicity, which 
lead in turn to estimates of seismic hazard and risk, and in some cases 
to revisions of building codes. Considering that lives and large invest-
ments are at risk, the treatment of the uncertainties in these data has often 
been surprisingly casual. Government agencies that have tabulated slip 
rates and uncertainties have rarely specifi ed the nature of the distribution 
for which they report the standard deviation (or other undefi ned scalar 
measure of uncertainty). They have often arrived at their preferred rates 
and uncertainties by deliberation in a committee of experts, which is an 
undocumented and irreproducible process. A disturbingly large fraction 
of the rates have been quoted as having uncertainties of exactly ¼ or ½ of 
the preferred offset rate, suggesting that the subject did not receive very 
serious consideration.

It might seem desirable to answer such questions with very intensive 
resampling of slip rates on a few representative faults. For example, the 
National Earthquake Hazard Reduction Program has funded multiple 
investigations of the San Andreas fault. However, there are two obstacles: 
fi rst, exposed geology typically only provides a limited number of datable 
offset features (if any) along any given fault trace. Second, slip rates defi -
nitely vary in time (e.g., during earthquakes), and may also vary in space 
(along the trace), which makes it very diffi cult to conclusively falsify any 
single measurement with another single measurement. Many authors pre-
fer to resolve discrepancies by increasing the number of free parameters 
in the slip history of the fault.

Consequently, a purely frequentist approach to determining the uncer-
tainty in geologic slip rates is not practical or correct. We must rely on 
a combination of: (1) redefi nition of the objective, from a complex slip 
history to a single long-term slip rate; (2) Bayesian approaches, in which 
prior assumptions about the shapes of distributions substitute for multiple 
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sampling; and/or (3) bootstrap methods, which use properties of the dis-
tributions of offset distance, offset age, or offset rate for all active faults in 
some class to help estimate the corresponding distribution of a particular 
fault. One objective of this paper is to begin a formal discussion about 
which redefi nitions, prior assumptions, bootstrap methods, and computa-
tional paths the community of geologistsand geophysicists might choose 
to support as a standard. Standardization would be helpful because it 
would: (1) provide guidance to investigators; (2) increase reproducibility 
of conclusions, and (3) permit automated retrospective revision of geo-
logic offset-rate databases if prior assumptions should need to be changed, 
or if systematic errors in the geologic time scale should be discovered in 
the future.

One of the challenges we face is to mitigate the adverse effects of three 
kinds of misleading data, which cannot usually be identifi ed in isolation 
or in advance: fundamentally incorrect offset rates (due to, for example, 
failure to span the whole fault, undetected complex initial shapes of offset 
features, or faulty correlation in space or in geologic time); inapplicable 
offset rates (which are correct as averages over their lengthy time win-
dows, but misleading when considered as neotectonic rates); and unrepre-
sentative offset rates (very small or zero rates measured at or beyond the 
extent of the fault trace which is active in the neotectonic era). I propose 
that the fi rst two problems can be handled by developing bootstrap esti-
mates of their frequency, and then merging comparable offset rates (along 
one fault) with a formula built to refl ect these probabilities. I suggest han-
dling the third issue by using the small- or zero-offset data to redefi ne the 
length of the active fault.

The method advocated here has the following nine steps.
(1) Estimate the probability density function of one scalar component 

of the far-fi eld cumulative offset since a particular geologic event, 
including uncertainty due to plausible but invisible elastic relative 
displacements which leave no geologic record.

(2) Estimate the probability density function of the age of the geo-
logic event associated with this offset (which will frequently be a 
smoothed-boxcar or other non-Gaussian distribution).

(3) Convolve these two distributions to obtain the probability density func-
tion for the long-term offset rate for this particular pair of offset fea-
tures.

(4) Defi ne a scalar, dimensionless measure of the disagreement between 
two long-term offset rate distributions determined for the same com-
ponent of slip on the same fault train (defi ned below).

(5) Identify strong disagreements between multiple rate estimates for a 
single fault train, and calculate how their frequency in a given large 
region varies with age of the offset features and with the type of lit-
erature source

(6) Estimate the fractions of published geologic offset rates which are 
incorrect or unrepresentative (for each type of literature source) 
when the offset feature is young.

(7) Estimate the additional fraction of published offset rates that are inap-
plicable to neotectonics, as a function of the age of the offset fea-
ture.

(8) Considering results of steps 5–7, merge all offset-rate probability 
density functions from one fault train (possibly including incorrect, 
unrepresentative, and inapplicable ones) to provide the best com-
bined estimate of the long-term neotectonic offset rate (under the 
assumption that it does not vary along the trace).

(9) Express this distribution in terms of simple measures (mode, median, 
mean, lower and upper 95% confi dence limits, and standard devia-
tion) and present these in tables.

The Bayesian aspects of the program are most apparent in steps 1 and 
2, while the bootstrap aspects are most apparent in steps 5–7. Steps 3–4 and 

8–9 are purely mathematical. However, at several points it will be necessary 
to deal with incomplete information, as when only a lower limit on an offset, 
or only an upper limit on its age, is available. In these cases, I rely on a prior 
estimate of the probability density function for offset rate that is determined 
by bootstrap estimation based on similar faults in the region. The assump-
tions necessary to justify this are described in the next section.

This paper has a rather narrow focus on determining long-term offset 
rates of faults only by use of offset geologic features (and groups of fea-
tures). Several other valid approaches are available: (1) use of geodetic 
estimates of differences in benchmark velocities across faults; (2) use 
of plate tectonic constraints on the total of the vector heave rates for a 
system of faults composing a plate boundary; (3) local kinematic-consis-
tency arguments that extend a known slip rate from one fault to those that 
connect to it; and (4) use of instrumental and historical seismicity and/or 
paleoseismicity. There is extensive literature on numerical schemes for 
merging these approaches, and it is defi nitely true that using a variety of 
schemes will reduce uncertainty. I am also involved in such studies, in 
which we use our kinematic fi nite-element code NeoKinema (e.g., Bird 
and Liu, 2007). However, merging geologic, geodetic, plate tectonic, and 
perhaps seismicity data should only be attempted after properly character-
izing the uncertainties in each. This paper addresses the more limited task 
of determining best-estimate offset rates and their uncertainties purely 
from offset geologic features.

BASIC ASSUMPTIONS

1. I assume that geologists can accurately distinguish tectonic faults 
(those which cut deeply into the lithosphere) from surfi cial faults sur-
rounding landslides (which merge at a shallow depth) and from surfi cial 
faults associated with sediment compaction, groundwater withdrawal and 
recharge, or magma chamber infl ation and defl ation (which root in a sub-
surface region of volume change). I assume that only tectonic faults are 
included in the database.

2. I assume that the senses of predominant offset reported for an active 
fault (dextral or sinistral and/or normal or thrust) are correct. The report-
ing geologist typically has access to many scarps and offset features that 
are not datable, but can be described as “young” with high confi dence. 
Also, regional fault-plane solutions and/or other stress-direction indicators 
provide guidance.

3. I assume that tectonic faults have motion that is geometrically and 
physically related to relative plate velocities, so that long-term offset rates 
that are orders of magnitude faster or infi nite are not plausible.

The implication of these assumptions is that long-term offset rates of 
tectonic faults are defi ned to be non-negative, and that a prior probability 
density function for long-term offset rates of active tectonic faults can be 
estimated from research in a particular plate-boundary region.

For procedural reasons, it may be desirable to add another qualifying 
assumption.

4. Data to be processed by this proposed algorithm should ideally come 
from the peer-reviewed scientifi c literature (including theses, but exclud-
ing abstracts). This helps to protect data quality in several ways. (1) The 
numbers describing offset, age, and uncertainty will be the authors’ fi nal 
best estimates, recorded in an archived source. (2) Each entry will have 
been screened for elementary errors in logic. (3) Data will be certifi ed as 
having signifi cant information content. As a counterexample, imagine that 
someone wished to treat a recent snowfall as an overlap assemblage, and 
entered hundreds of “data” showing that each of the faults in California 
was motionless in that particular week. A few such “data” do no harm, 
as this algorithm will be designed to return the prior distribution of long-
term offset rates in such cases. However, it would be very undesirable for 
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the combined long-term offset rates of faults to be too heavily weighted 
toward this inherited prior distribution, when other data of higher informa-
tion content are available. One opportunity for future improvement in this 
algorithm would be to defi ne and quantify the subjective notion of infor-
mation content and then to derive its proper role in weighting.

OFFSETS AS COMPONENTS OF SLIP

Assume that one side of a fault (e.g., footwall) is taken to be fi xed, 
to provide a temporary and local reference frame for displacements and 
velocities. The displacement of the moving side is the slip vector. Slip 
can be considered as consisting of a vertical component (throw) and a 
horizontal component (heave). The heave is a two-component horizontal 
vector, which can be further subdivided into a fault-strike-parallel com-
ponent (strike slip) and a perpendicular horizontal component (closing or 
opening, i.e., or convergence or divergence). Here I use the generic word 
offset to stand for any of these scalar components of fault slip. It is only 
meaningful to compare long-term offset rates that refer to the same com-
ponent of slip rate. In practice this component is usually the strike slip (for 
predominantly dextral and sinistral faults) or the throw (for thrust faults 
and high-angle normal faults) or the divergence (for low-angle normal 
faults and/or magmatic centers of crustal spreading). Occasionally the 
convergence component can be estimated for low-angle thrusts by use 
of borehole, tunnel, and/or seismic refl ection data. Data on divergence or 
convergence can be compared with data on throw by measuring or assum-
ing the mean dip of the fault within the seismogenic layer. In this study, 
cases of oblique slip (mixed strike slip and dip slip) are usually handled 
by treating these two components as separate processes (which happen to 
occur simultaneously on the same fault trace).

In order to determine slip or offset, it is theoretically best to map (or 
excavate) a pair of offset piercing points that were separated when fault 
slip disrupted an originally continuous piercing line. Piercing lines include 
rims of impact craters, shorelines (formed during a brief highstand), ter-
minal glacial moraines (formed during a brief glacial maximum), and lava 
fl ows and debris fl ows that were confi ned to narrow straight valleys cross-
ing the fault trace. If the topography already included fault scarps at the 
time of the formation of any of these features, they may have formed with 
initial kinks. Then, there is danger of erroneous interpretation.

A different kind of piercing line may be defi ned as the intersection of 
two planar features of different ages, if the same pair of features is found on 
both sides of the fault. For example, fl at-lying sediments may be intruded 
by a vertical dike, with both planar features cut by the fault. Or, gently dip-
ping alluvial fan surfaces may be truncated laterally by steep cut banks on 
the outside of channel meanders. Such intersection piercing lines present 
the risk of another type of misinterpretation: the throw will be recorded 
beginning with the formation of the quasi-horizontal feature, but the strike 
slip will be recorded only after the formation of the quasi-vertical feature. 
In such cases, it is best to treat the throw and the strike-slip components 
of the slip as separate problems, each with their own constraining data 
and resulting model. Then, separate ages may be assigned for the critical 
geologic events that initiated recording (e.g., sedimentary bed age versus 
dike or cutbank age). Or, the same age may appear as a best estimate for 
one offset component, and as an upper limit for the other offset component 
(e.g., cosmogenic nuclide age of a fan surface truncated by a cutbank).

Where the geology does not present piercing points created by the rup-
ture of a piercing line, it is still possible to measure some kinds of offsets 
using pairs of fault-surface trace lines, which are the intersections of origi-
nally continuous planes with the fault surface. Offset of a quasi-vertical 
and fault-perpendicular dike, vein, or older inactive fault can provide an 

estimate of strike slip. Offset of a quasi-horizontal sedimentary bed or ero-
sion surface can provide an estimate of throw.

One special note is necessary concerning throws of thrust faults. New 
thrust faults typically propagate upward, and prior to break-out they may 
be blind thrusts expressed as monoclines at the surface (especially if sedi-
ments are present). Even after breakout, the vertical height of the mono-
cline is often greater than the throw measured directly across the fault 
trace, because the height of the monocline incorporates the entire zone 
of anelastic deformation. If the purpose of the database is to support esti-
mates of seismic hazard, then it is probably prudent to assume that the 
throw of thrust faults at several kilometers depth (where large stress drops 
may occur during earthquakes) is given by the height of the monocline, 
not by the smaller throw seen directly across the trace in outcrop. This 
phenomenon of distributed anelastic strain around the shallow portions 
of thrust faults is conceptually separate from the following discussion of 
distributed elastic strain around all seismic faults.

SHORT-TERM VERSUS LONG-TERM OFFSET RATES

A majority of active continental faults are seismic, so they slip as much 
as 15 m in a few seconds, and may then not slip at all (at the surface) for 
hundreds to thousands of years. The modeling methods of Bennett (2007) 
deal with time-dependent slip rates, but work best in cases where the vari-
ation in slip rate has been smooth, so that it can be described by approxi-
mately as many parameters as there are offset features. Also, Bennett’s 
derivation assumes that unmodeled effects have Gaussian distributions, 
which is not a good description of slip-rate variations within one seismic 
cycle. Therefore, this study takes a different approach: instead of attempt-
ing to recover the history of slip rate on a fault, I attempt to recover only a 
single long-term rate (defi ned below) which is presumed to be steady over 
time scales of a few million years. This less ambitious objective is actually 
diffi cult to reach.

In many cases, geodesy has shown that benchmarks more than 10–30 
km from active faults have relative velocities that are steady through time, 
and that differences between far-fi eld and near-fi eld displacements are 
accommodated by changes in elastic strain. Let F(t) be some offset (as a 
function of time t) measured at the fault trace (or from fold amplitude, in 
the case of thrust monoclines), while D(t) is a distant (far fi eld) relative 
displacement component expressed as the same kind of offset, and E(t) 
is the cryptic distributed offset due to changes in elastic strain along the 
same fault (but excluding any displacement due to strain fi elds of other 
faults). In this notation, 

 D(t) = E(t) + F(t)    (1)

where D(t) is monotonically increasing and curvilinear in time, F(t) is 
non-decreasing but highly nonuniform, and E(t) is an irregularly oscillat-
ing “saw tooth” (or “fractal saw tooth”) function that is bounded within 
a range of ~15 m or less (Fig. 1). In this paper, short-term offset rate (S = 
ΔF/Δt, for some interval of time Δt that usually ends at the present) is used 
for the quantity that has typically been derived from offset features in the 
literature. Long-term offset rate L = ΔD/Δt will be the goal of statistical 
estimation because it has many fewer parameters, and can perhaps even be 
approximated as independent of time within the Quaternary history of the 
western United States (although that remains to be demonstrated). Then,

 L = ΔD/Δt = (ΔE + ΔF)/ Δt    (2)
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Because long-term offset rate L is central to this paper, but rather 
abstract, the following are some idealized cases in which L has a simple 
physical meaning.

1. If a fault is aseismic and creeps very regularly (e.g., due to strain-
rate-strengthening rheology in the gouge), then ΔE = 0 and L = S.

2. If the active fault is planar, has a uniform slip-rate vector (along its 
trace), and is suffi ciently isolated from other active faults, then one can 
use geodetic benchmarks far from the fault (where ΔE ≅ 0 according to 
dislocation modeling) to measure ΔD and thus L directly.

3. If we were willing to install stress meters beside creep meters and 
record the history of shear stress changes and fault movement for several 
centuries, we could then choose any two different times with equal shear 
stress, assume that ΔE = 0 for that particular Δt, and obtain L directly from 
the ΔF measured by creep meters in the same time window.

Fortunately, the maximum possible difference between short-term off-
set rate and long-term offset rate tends to decrease with increasing mea-
surement duration Δt:

 sup (||S – L||) = sup (||ΔE||)/Δt.    (3)

where operator || || indicates an absolute value, and sup (||ΔE||) (the maxi-
mum of the absolute value of the change in elastic displacement) can be 
estimated based on historic earthquakes on other faults of similar style.

PROBABILITY DENSITY FUNCTIONS AND FUNCTIONAL 
COMBINATIONS

We now begin to treat ΔF, ΔE, ΔD, and Δt as random variables, 
which all refer to one particular offset feature on one particular fault. 
They will not always be random in the frequentist sense that they dis-

Figure 1. Hypothetical histories of distant offset (D), fault-trace off-
set (F), and cryptic elastic offset (E) for a normal-fault with a long-
term rate of 1 mm/yr. In this simulation the distribution of coseismic 
steps in F was based loosely on results of Wells and Coppersmith 
(1994; see Fig. 2). Earthquakes are assumed to be more likely when 
elastic offset (E) is at a high level. The arbitrary designation of zero 
levels for these variables is unimportant, as only changes (ΔD, ΔE, 
ΔF) will be used in rate computations.

play variation in repeated trials; many are random in the Bayesian sense 
that a range of values is plausible with varying degrees of belief (in 
a community that shares certain assumptions and a common pool of 
literature) (Cowan, 2007).

Each variable (taking ΔF as an example to demonstrate notation) will 
be characterized by a cumulative distribution function P(ΔF ≤ f), where 
P() indicates a dimensionless probability, and by an associated probability 
density function (pdf) denoted by pΔF

(f'):

    

(4a)

                             pΔF
 ≥ 0        (4b)

  (4c)

  (4d)

In this paper I will employ some ad hoc functions that are almost pdfs, 
in the sense that their integrals are dimensionless numbers of order unity. 
For compact notation, it is very convenient to convert these to pdfs by 
defi ning a normalizing operator N() for any function that has the physi-
cal units of a pdf, and that adjusts this function to an integral of unity, 
as required by equation 4d. That is, for any function y(x) that has a fi nite 
integral, and whose integral is nonzero, and assuming that the physical 
units of y and of x are respectively reciprocal,

 

   (5)

Note that this normalizing operator does not cause any change in the phys-
ical units of its argument function, because the denominator in equation 5 
is restricted to be dimensionless.

We also need to combine random variables by elementary operations 
like addition, subtraction, and division, so it is useful to review how their 
pdfs will combine. Let X and Y be two independent random variables, with 
associated pdfs of p

X 
(x') and p

Y 
(y'). Let H(X,Y) be an algebraic function 

that is both differentiable and monotonic (hence, invertible) with respect 
to each of X and Y. Then, the pdf of H, symbolized by p

H 
(h'), can be 

expressed as either of two weighted convolutions:

 (6)

or

 (7)

where all three terms inside each integral are uniformly non-negative. See 
the Appendix for proof.
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OFFSET AT THE FAULT TRACE, ΔF

Stated Offset is a Best Estimate

The measurement of ΔF is made with a ruler (either on the ground, or on 
a map or section). This is a well-studied type of measurement, for which it 
is traditional to assume a Gaussian (normal) distribution. However, under 
the assumptions of this project, ΔF is not permitted to be negative, while 
the long tails of a Gaussian distribution would permit that possibility. 
Therefore I assume a truncated and renormalized Gaussian distribution:

  (8)

where ΔF
n
 is the nominal or most likely value and σΔF

 is its standard 
deviation.

In most cases, the uncertainty in the offset (σΔF
) is dominated by the 

somewhat subjective decision of where to place the ruler, rather than by 
the mechanical operation of reading it. This is especially an issue when 
the offset ends of the piercing line no longer reach the fault trace because 
of erosion. It would be desirable for investigators to ask coworkers 
and colleagues to make independent measurements of offset “at” (i.e., 
“subjectively projected to”) the fault trace, so that ΔF

n
 and σΔF

 could 
be estimated from a sample population of more than one (a frequentist 
approach).

When the investigation is no longer active, and the nominal offset ΔF
n
 

is obtained from the literature or from a database, there are several alterna-
tives for estimating σΔF

. If the authors cite a standard deviation explicitly, it 
should be honored. If the authors cite a range for the offset (e.g., 5–9 m, or 
equivalently 7 ± 2 m), it is important to know what level of confi dence was 
intended. For example, if the range was a 95% confi dence range, then σΔF

  
= (ΔF

max
 – ΔF

min
)/4 (e.g., 1 m in this case). Unfortunately, many authors 

do not state the level of confi dence, and another possibility is that their 
intention was to present “ΔF

n
 ± σΔF

,” in which case σΔF
  = (ΔF

max
 – ΔF

min
)/2 

(e.g., 2 m in this case). In cases where no clarifi cation of intent is available, 
I adopt a compromise rule that assigns σΔF

  = (ΔF
max

 – ΔF
min

)/3; that is, the 
quoted range will be interpreted as an 87% confi dence range.

If no standard deviation and no range are quoted (or if this information 
has been lost during database compilation), then the only recourse is infer 
an implied standard deviation from the position of the least-signifi cant 
nonzero digit in the quoted nominal offset ΔF

n
. Implied standard devia-

tions can be defi ned as one-half of the increment caused by increasing the 
right-most nonzero digit by unity. For example, an offset stated as either 
1 km or 1000 m would be assigned an implied standard deviation of 500 
m, while an offset of 1.3 km or 1300 m would be assigned an implied 
standard deviation of 50 m. Implied standard deviations always have mag-
nitudes of 5 × 10i of the current length units, where i is an integer.

Occasionally, a study will suggest two alternate pairings of piercing 
points as distinct possibilities. For example, either of two headless alluvial 
fans (of similar age) on the downstream side of the fault trace might be 
candidates for pairing with a canyon on the upstream side of the fault. One 
might consider using a bimodal probability density function pΔF

 in such 
cases, and the equations proposed below are general enough to handle 
such a model. However, when two possible pairings are suggested, we 
must also worry that these two cases may not be exhaustive, and that these 
two possible pairings may have been selected from among many, based 
on prior estimates of the offset rate for that fault. Such circularity would 
be impossible for regional modelers to unravel, and with the involvement 

of naive intermediaries it could easily grade into pathological science. To 
prevent this, it may be wiser to simply disregard any offsets for which 
bimodal (or multimodal) pdfs have been suggested.

A deep question that arises in this context is, how often have authors 
selected the offset features that they chose to report in the literature based 
on conformity with prior beliefs about the expected slip rate? Such selec-
tion might be completely unconscious if the geologist knew the age of 
the potential offset feature at the time of mapping. Fortunately, it is more 
typical that the age is determined only by time-consuming lab work. Then, 
any selection is at least conscious. Whether any investigator would be 
willing to report applying conscious selection is also problematic.

Stated Offset is an Upper Limit

Offsets are sometimes reported only as upper limits, with no best esti-
mate. This occurs when the offset feature spans more than one active fault, 
but is not seen between the faults (due to erosion or burial). It is reason-
able to assume that quasi-parallel faults of the same style have the same 
sense of slip, so the total offset serves as an upper limit ΔF

max
 for each 

fault individually. According to the assumptions of this study, zero is the 
default lower limit (because we assume that we know the sense of slip of 
each active fault). Rather than assuming a rectangular uniform (boxcar) 
pdf for such cases, I recognize that the upper limit is at least slightly fl ex-
ible (subject to uncertainty), and use a smoothed-boxcar distribution with 
a complementary-error-function (erfc) shape around the upper limit:

 
(9)

where the standard deviation of the upper limit, σΔFmax
, is either stated 

by the authors or estimated by one of the methods listed above. If the 
authors have indicated a range for the upper limit, its standard deviation 
is one-third of the quoted range. Otherwise, an implied standard deviation 
is determined from the position of the least signifi cant nonzero digit in 
the number.

Stated Offset is a Lower Limit

Offsets for which only lower limits ΔF
min

 are reported present a greater 
challenge. This happens most often with high-angle normal faults, where 
the topographic height of the scarp at the mountain front gives a lower 
limit on the throw. Actual throw would typically be greater if we could 
measure the erosion of the mountain footwall and the sediment thickness 
on the valley hanging wall, both of which reduced the scarp height before 
it could be measured. Lacking an upper limit, we cannot write a one-sided 
pdf analogous to equation 9, because the function would have an infi nite 
integral, and the normalizing operator could not be applied. This is a situ-
ation in which I appeal to prior knowledge to put loose but reasonable 
bounds on an otherwise open-ended distribution. Assuming that we have 
a prior estimate  of the pdf of long-term offset rates for this type of 
fault in the same region, I create a generic prior estimate of the offset. If Δt 
were precisely known, this would be:

 (10)

The elastic term is dropped for simplicity, because it has zero mean, 
and because it is no larger than ~6 m, which is not signifi cant relative to 
the height of mountain ranges. Now, given that both Lprior and Δt can be 
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represented by pdfs, and applying equation 6 to equation 10, the pdf of the 
prior fault-trace offset is:

 (11)

[where functional defi nition of the pΔt
(t'), the pdf for the time interval Δt, 

is deferred to the section below]. Then, after application of the lower limit, 
the recommended form is (erf is error function):

(12)

Stated Offset is Zero

Observations that an active fault is covered by an unfaulted overlap 
formation of known age can be quite valuable. This is one of the few 
ways to directly falsify incorrect offset rates from imagined offset features 
adjacent on the same fault section. Or, the point of no offset may serve 
to document variation in long-term offset rate with distance along a fault 
trace. In tables and algorithms (like this one) that are primarily concerned 
with offset features, overlap assemblages might appear as offsets of 0 m, 
or (more often) as positive offsets that have a constrained ending time 
before the present. The associated pΔF

 for the fault-trace offset during post-
overlap time is a delta function at the origin. In numerical computations a 
delta function is inconvenient, and I have approximated it with one of sev-
eral distributions of fi nite width. If a standard deviation is explicitly stated 
for the zero offset, then a truncated and normalized Gaussian distribution 
is used (equation 8, with ΔF

n
 = 0). If an upper limit on the nominally zero 

offset is stated, then that is used to create a uniform (boxcar) distribution 
extending from zero to the upper limit. If neither standard deviation nor 
upper limit is stated, then I infer a minimal amount of geologic impreci-
sion:

     (13)

where ε = 0.01 m. The basis for this arbitrary value is that an overlap 
assemblage might easily have ~100 microcracks/transect of ~100 μm off-
set each, and yet appear unfaulted to a fi eld geologist. As discussed in 
a previous section, observations of zero offset could potentially become 
very numerous if they included every paved road crossing a fault, and 
there are practical reasons for limiting such data to only those with Δt of 
at least 100–1000 yr, data that add meaningful amounts of information.

CRYPTIC ELASTIC OFFSET, ΔE

Unlike ΔF and ΔD, cryptic elastic offset ΔE is not assumed to be posi-
tive. It will often be negative, whenever an earthquake (or multiple earth-
quakes) during the measurement time window caused fault-trace offsets 
exceeding the long-term expectation (ΔF > LΔt), so that regional elas-
tic strain changes were net unloading rather than net loading. If E(t) is 
bounded by upper and lower limits (related to physical limits on the mag-
nitude of shear stresses, and the geometry of the fault and elastic litho-
sphere), and if ΔE = E(t

2
) – E(t

1
) is measured between fi ducial times that 

are both randomly selected, then the expectation (mean, fi rst moment) of 
ΔE is zero.

Another question is whether the fi ducial times have really been selected 
without regard to earthquake times. One can argue that some debris fl ows 
were caused by earthquakes on the fault, which they then crossed to create 
a post-seismic piercing line. One can also argue that faults are more likely 
to be studied just after earthquakes. I have no solution to offer, except to 
make a hopeful assumption that any biases caused by these post-seismic 
selection pressures on t

1
 and t

2
 will tend to cancel.

For long time windows associated with large offsets, meaning those 
that are likely to have encompassed multiple earthquakes, there is little 
likelihood of correlations in phase relative to the “earthquake cycle” (if 
such a thing even exists) at times t

1
 and t

2
. Therefore, the chances of hav-

ing a net gain in cryptic elastic displacement are equal to the chances of 
having a loss of the same size. In this long-time limit, the probability den-
sity function of cryptic elastic offset (pΔE

) can be estimated by mirror-
ing-and-halving the probability density function of coseismic offsets in 
historic ground-breaking earthquakes (p

C
) on faults of the same type (e.g., 

only strike slip, only thrust, or only normal):

     (14)

There are some issues raised by this approximation. First, the con-
ditioning event that causes a coseismic offset to be measured and pub-
lished has not been clearly defi ned. This could cause our estimate of p

C
 

to be inaccurate near the origin (small offsets). However, if we focus on 
the importance of estimating the tails of p

C
 and pΔE

, and note that the 
most dramatic scarps and largest earthquakes on land are always stud-
ied, this issue seems less serious. It is also necessary to assume that the 
historic period has been long enough to display the largest earthquakes 
that can occur in each tectonic setting. Bird and Kagan (2004) argued 
that this seems to be true, at least when earthquakes are compiled glob-
ally for a century.

Wells and Coppersmith (1994) created a global compilation of slip 
in historic ground-breaking continental earthquakes (excluding subduc-
tion events). I use maximum slips (rather than average slips) from their 
Table 1 (Wells and Coppersmith, 1994) because these are more frequently 
reported, and because they are more relevant to determining the tails of 
the p

C
 and pΔE

 distributions. I divide them into three populations of domi-
nantly strike-slip, thrust, or normal-faulting earthquakes. When each pop-
ulation is plotted as a cumulative distribution (Fig. 2) they seem to have 
an exponential character:

    (15a)

    (15b)

The median of the maximum slips is probably the most stable measure 
of these small samples: 2.0 m for strike slip, 1.3 m for thrust, and 1.15 m 
for normal earthquakes. Using these to determine the λ values results in 
0.347 m–1 for strike slip, 0.533 m–1, for thrust, and 0.60 m–1 for normal. 
If the offset being studied is not the full slip, then these values would be 
geometrically transformed. For example, if the offset in question is the 
throw of a thrust fault, and the assumed dip of thrust faults is 20°, then the 
median maximum offset in historic thrust earthquakes would become a 
median throw of 1.3 m × sin(20º) = 0.44 m, and λ would correspondingly 
increase to 1.56 m–1.

Simple symmetry of pΔE
 breaks down for short time windows Δt. 

When the time window is so short that the number of expected earth-
quakes is <1, the positive (loading) side of pΔE

 is peaked around mod-
est values of LΔt, but the negative side of the distribution has lower 
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probability densities extending further from the origin and representing 
the small chances of large coseismic unloading of elastic strain. (The two 
halves of the pdf still balance so that the expectation is zero.) In this limit, 
I use the prior distribution of long-term slip rates  (on faults of the 
same type) as a proxy for the unknown long-term rate of the fault in ques-
tion, and convolve this with the pdf of the time available for strain accu-
mulation, so that:

 
1

t

k

e=� �
� � (16)

where k is a constant numerically determined to give pΔE
 an expectation of 

zero. Note that on the negative side (e' < 0 ) this pdf has the same form as 
in equation 14, which expressed the long-term limit.

For time windows Δt that are neither very short nor very long, a gradual 
transition in the positive side of the pdf is desirable. I propose as a working 
hypothesis that the complement of the cumulative probability of a certain 
positive elastic offset (which is the probability of an even larger elastic 
offset) decreases with offset as the product of (1) the estimated probability 
that such an offset could be accumulated in the time available (based on 
the prior distribution of long-term rates), with (2) the probability that the 
future seismic conversion of such an offset (ΔE → ΔF) would produce a 
coseismic offset consistent with the historic record:

1 – P(ΔE ≤ e | ΔE > 0) = P(e < ΔE | ΔE > 0) = P(e < LpriorΔt) P(e < C)   
     (17)

The form of the pdf for positive elastic offsets can then be determined 
by taking the derivative (which becomes fairly complex because Lprior, Δt, 
and C are all random variables):

Figure 2. Maximum of slip along the surface trace in continental 
ground-breaking earthquakes tabulated by Wells and Coppersmith 
(1994). Subduction-zone earthquakes are not included. Also shown 
are the exponential models (equations 15a and 15b) fi t to each, by 
adjusting the single free parameter to match the median slip. These 
models are used to estimate the plausible sizes of changes in elastic 
offset, ΔE.

 
� � � �

����

     (18)

Finally, the positive and negative sides of the pdf are properly weighted 
and jointly normalized:

   (19)

where k is computed (as in equation 16) to give an expectation of zero. As 
Δt increases there is a gradual transition from the growing distance scale 
of LΔt to the limiting distance scales of p

C
 on the positive side of pΔE

. The 
transition will take place (for any given small positive e') over a range of 
Δt because of the uncertainty in L and the fact that it has been replaced 
by the prior distribution as a proxy. However, for very large positive e', 
greater than the offsets in historic earthquakes, pΔE

 will be nearly zero 
regardless of Δt, because of the fi rst factor in the last line of equation 18.

DISTANT (FAR FIELD) OFFSET, ΔD

Because distant (far fi eld) offset ΔD is the sum of ΔE and ΔF (equation 
1), its pdf is obtained from the convolution (equation 7) of pΔE

 with pΔF
. 

However, there is also a requirement (by initial assumption) that ΔD is 
positive. Thus, the convolution is truncated and normalized:

 (20)

The complete generality of this convolution equation permits any of the 
different pdfs that were previously proposed (for different cases of avail-
able information) to be incorporated. A real example from the Teton nor-
mal fault of Wyoming is shown in Figure 3. Note that in other cases where 
the length scale of ΔF is much greater than the length scale of ΔE, the 
form of the convolution based on equation 7 is numerically superior to the 
alternative form implied by equation 6, which would be inconveniently 
stiff and diffi cult to compute precisely.

AGE OF THE OFFSET FEATURE, Δt 

Stated Age is a Best Estimate

The offset features that are simplest to date are igneous dikes, lava 
fl ows, and pyroclastic fl ows, because they contain minerals that formed, 
and isotopic systems that blocked, at the time when the piercing line 
was established. I disregard as insignifi cant the small span(s) of years 
between laboratory fi ducial time, laboratory measurement, publication of 
the measurement, and analysis of the published data. In these cases, the 
pdf for the age of the offset feature [pΔt

(t')] can be approximated as equal 
to the pdf for the laboratory determination of radiometric age
. These are estimated to be Gaussian, and characterized by a nominal or 
best-estimate (mode = median = mean) age  and by a standard 
deviation , which will depend on repeatability, instrument calibration, 
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blank level, and any complications in the sample history (such as Ar loss 
or Pb loss) that can be handled by established methods. I truncate the age 
distribution so that it does not extend to negative ages:

  (21)

If the authors quote  explicitly, it should be honored. If they only 
quote a range of ages, then (as I did in the case of range of offsets) I will 
use the rule . If only a bare age is stated, then the 
implied standard deviation will be defi ned to be one-half of the value of 
an increment of one in the rightmost nonzero digit; for example, quoted 
ages of either “1.3 Ma” or “1300 ka” would have an implied standard 
deviation of 50 k.y. 

In other cases, volcanic strata are not directly dated, but are correlated 
with strata elsewhere that have been extensively studied and accurately 
dated (e.g., Bishop tuff or Peach Springs tuff in eastern California). While 
such correlations are not always correct, this is not a situation that is easily 
described by a probability density function for the age of the bed. Instead, 
I consider herein the possibility of faulty correlations in geologic time as a 
potential cause of fundamentally incorrect offset rates.

Very young ages (younger than 100 ka) of sedimentary layers based on 
14C or cosmogenic nuclides tend to be biased toward the old side. This is 
because the event being dated (fi xation of atmospheric 14C into wood, or 
initial exposure of a future rock clast on a weathering hillside) preceded 
the deposition of these samples in the fault-covering stratum. This upward 

Figure 3. Example of convolution of the probability density func-
tion (pdf) for a small fault-trace offset ΔF (of 2.8 m) with estimated 
pdf for elastic offset ΔE in the same period (15 k.y.), to obtain esti-
mated pdf of the distant offset ΔD. The structure seen in the right 
side of the pdfs for ΔE and ΔD is based on the empirical (bootstrap) 
determination of the pdf for long-term offset rates on normal faults 
in the conterminous western United States The practical effect of 
this convolution is to increase the uncertainties associated with very 
small offsets. This example is based on data from the U.S. Geological 
Survey Quaternary Fault and Fold Database for the throw history of 
the Teton normal fault, Wyoming. Details are in Table 1 (see foot-
note 1).

bias in the age could create a downward bias in offset rates, if not rec-
ognized. In well-funded studies, this problem is sometimes mitigated by 
quoting the youngest age found in a group of analyses of samples from a 
single stratum, or by more sophisticated methods taking into account prior 
knowledge (e.g., Biasi and Weldon, 1994). Even then, some uncertainty 
and bias remain. This is similar to the problem of determining extinc-
tion ages from a fi nite distribution of discrete fossils (Weiss and Marshall, 
1999).

Often this effect is uncontrolled, and an uncertain amount of inheritance 
(Δt inheritance) occurred between the beginning of time recording and the for-
mation of the piercing line. As

  Δt = Δtlab – Δt inheritance    (22)

it follows that we should broaden the pdfs of many laboratory 14C and 
cosmogenic nuclide

 (23)

I assume a simple one-parameter exponential model for the distribution 
of inheritance:

 (24)

The study of Biasi and Weldon (1994) is an excellent resource for esti-
mating the ω of 14C inheritances in California, because they compared 
106 laboratory ages (all younger than 2 ka) to posterior age distributions 
constrained by stratigraphy, sedimentation rates, and one historic earth-
quake. In the most extreme case (W125ac) the inheritance of one sample 
appeared to be ~440 yr. However, the median apparent inheritance of 
strata (for those strata where it was positive) was only 51 yr. I use this 
value to estimate ω ≅ 0.0136 a–1 for 14C in California.

This issue is more serious for cosmogenic nuclides, because erosion 
is a slow process, and rock clasts are more durable on the surface than 
charcoal. Bierman (1994, p. 13,893) mentioned in a review, “In every 
study to date, exposure age variability on a single geomorphic surface 
is signifi cant (usually >10%) and in most cases greater than expected 
from analytical uncertainty.” Furthermore, most of these early studies 
were conducted on eroding surfaces; for rock clasts on an offset (inactive) 
alluvial fan, the inheritance includes some fraction of the transport time 
as well as the time needed for erosion. It is often thought that boulders 
are the best sampling targets on fans because their transit times were the 
least (e.g., Blumentritt et al., 2005a). However two methodological stud-
ies by Blumentritt et al. (2005b) and Perg et al. (2005) of alluvial fans in 
the Mojave Desert of California established that ages of desert pavement 
are younger and more reproducible than ages of boulders; but they still 
show inheritance, which can be estimated by sampling to 2–3 m depths in 
pits (Machette et al., 2003). The correction for inheritance in arid Death 
Valley is typically 20–130 ka (Machette et al., 2003), but on the forested 
northern side of the San Gabriel Mountains it is only 1–20 ka for boul-
ders and 3–8 ka for fi ne sediment (Matmon et al., 2005). In cases of 
cosmogenic nuclide ages that were not already corrected for inheritance, 
I use equations 22–24 to broaden the age range toward the young side, 
taking ω = 3.5 × 10–5 a–1, corresponding to a median inheritance of 20 ka  
Unfortunately, this is a very crude allowance for an effect that probably 
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depends strongly on basement rock type, topographic slope in the eroding 
region, slope direction, and the many other variables that can be loosely 
termed “climate.”

Stated Age is Bounded by Two Limits

Many offset features are not datable at all, but have ages constrained 
by stratigraphic succession and/or crosscutting relations with other beds 
that have been dated. For example, an offset feature in rocks containing 
Miocene fossils is younger than the Oligocene-Miocene faunal transition 
at 23.8 Ma, but older than the Miocene-Pliocene faunal transition at 5.3 
Ma. These bounding ages are each subject to their own uncertainties (as 
shown by past revisions of the geologic time scale; Harland et al., 1990). 
The appropriate pdf for such cases is a uniform distribution with smooth-
ing of the left and right discontinuities to refl ect the uncertainty in the 
upper and lower limits:

 
     (25)

The comments listed after equation 21 about the selection of standard 
deviations also apply here.

Stated Age is a Lower Limit

Tabulated data also include some cases in which only a lower limit is 
provided for the age of the offset feature. Examples include uranium-series 
(closed system) and uranium-trend (open system) dating of soil carbon-
ates, including carbonate rinds on clasts in alluvial fans; the events being 
dated postdate sediment deposition by an unknown amount of time.

A pdf cannot be defi ned for a random variable that is potentially infi -
nite. The age of the Earth’s oldest surviving crust (ca. 4 Ga) can always 
be used as Δt

max
 in equation 25, but this only solves the problem in a 

formal sense. In California, I assume a smaller default maximum age 
of Δt

max
 ± σΔtmax

 = 135 ± 70 Ma, based on the Jurassic–Cretaceous age 
of the prominent plutons, volcanics, and sedimentary wedges that make 
up a large fraction of the upper crust. Even this more modest age limit 
can lead to artifacts. For example, if it is known that the San Andreas 
fault slipped 750 m in >0.03 m.y. (Rasmussen, 1982), then the obvious 
conclusion is that the slip rate is <25 mm/yr. But if we assume a uniform 
probability distribution in 0.03–135 m.y. for the age of the offset fea-
ture, then the 95% confi dence limits on the age become 3.4–131.6 Ma, 
and the 95% confi dence limits on slip rate become 0.0057–0.22 mm/yr, 
values that are clearly too low. (In cases where the investigation is still 
active, a tighter constraint should be supplied by reviewing the regional 
geology and entering the age of the oldest formations exposed locally as 
the upper limit on age of offset.)

To avoid this artifact, I make an additional assumption that any stated 
minimum age also provides an order-of-magnitude estimate for the true 
age, which is very unlikely to be more than 10 times larger. Therefore, I 
use an additional exponential term to weight the probability density near 
the lower limit:

 
     (26)

where λ = –ln(½)/Δt
min

. This assumption gives a more reasonable result 
(i.e., a distribution of L extending from ~15% of the expected upper limit, 
to the expected upper limit) in the processing of most published results. 
(However, it will lead to a new artifact of rate overestimation if offsets are 
published with minimum ages that are 10 times smaller than the true age. 
Such data have little information value, and should normally be screened 
out during the process of peer review.)

Stated Age is an Upper Limit

When only an upper limit on the age of the offset feature is available, 
the pdf is defi ned as a uniform distribution with one rounded shoulder, by 
simply dropping the erf() factor from equation 25:

 (27)

LONG-TERM OFFSET RATE,  L , FROM A SINGLE OFFSET 
FEATURE

Combining equation 2 with equation 6 or equation 7, we get two alter-
native convolutions for the probability density function (p

L
) of the long-

term offset rate (L) of a particular offset feature on a particular fault:

�
� �

 (28)

and

� �

 (29)

where ΔD, Δt, and L are all non-negative. In most cases, equation 29 will 
be used for numerical computation, because it does not involve an inte-
grand that is singular as �' → 0.

One property of these pdfs for long-term rate that may be unexpected is 
that they are not symmetrical, even when the pdfs for far-fi eld offset and 
for age are each symmetrical. This is a result of the division of the former 
by the latter, and the resulting partial-derivative terms (cf. equations 6 and 
7) that appear in equations 28 and 29. The probability densities of rates 
near the lower limit are higher than the probability densities of rates near 
the upper limit, so that the four central measures of the rate distribution 
typically occur in the order: (mode) < (median) < (mean) < (mean of nom-
inal lower and upper limits). An example is shown in Figure 4. Previous 
studies (including my own) that did not consider this effect probably had a 
subtle systematic bias toward artifi cially high long-term rates.

One necessary caution is that these equations only defi ne distributions 
for the average offset rate since creation of a particular offset feature; there 
is no implication that the actual rates have always been equal to the aver-
age rate. Possible time dependence of rates is assessed later in this paper, 
by comparisons between different offset features.

FAULT TRAINS VERSUS FAULT SEGMENTS AND FAULT 
SECTIONS

In the following I contrast and then combine long-term offset rates 
from different offset features along the same fault: initially to learn about 
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the prevalence of errors and rate changes, and later to determine the best 
possible combined rate. Such operations require deciding which rates are 
comparable, and the logic to follow requires that we select them on an a 
priori basis (using only the locations of the offset features relative to the 
fault network), not on an a posteriori basis (considering the rate values). 
So, it is useful to have a word or phrase to designate the geographic extent 
within which rates can be compared, and some rules for defi ning these 
geographic extents.

I use the phrase fault train to mean a contiguous piece of the trace 
of a fault system along which our knowledge of fault geometry permits 
the null hypothesis of uniform long-term offset rate. One basic rule for 
defi ning fault trains is that each one must end at a triple junction (or 
higher-order junction) of active faults, because the addition and/or sub-
traction of slip-rate vectors that occurs at a junction normally implies a 
change in all components of long-term offset rate. There may also be 
additional points along a trace that require a boundary between adjacent 
fault trains, but this depends on the particular offset rate in question, 
and on fault geometry. For example, a right-angle bend in a fault trace 
where a strike-slip fault (tear fault) connects to a dip-slip fault would 
be a point of expected change in all the offset measures typically cata-
logued (strike-slip rate, throw rate, and opening and/or closing rate), 
even though it would not be a point of change in the heave rate vector. 
Thus it should be a boundary between two fault trains unless the offset 
rate in question is the heave rate vector (a rare case). On the other hand, 
some dip-slip faults have complex traces with many bends, where there 
are also changes in dip (lateral ramps, mullion), but have parallel slip 
vectors of uniform trend and plunge. If the offset rate in question is the 

Figure 4. Symmetric distributions of probability density for (A) dis-
tant offset (ΔD) and (B) age of offset feature (Δt) result in asymmet-
ric distributions of probability density for (C) the long-term offset 
rate (L), according to equation 28 or 29. Therefore, the four central 
measures (mode, median, mean, and average of upper and lower 
bounds) of the offset-rate distribution are typically different, and 
in the order shown. Cumulative probability distributions (with dif-
ferent vertical scales) are also shown in each graph. This example is 
based on data from Byrd et al. (1994) for the throw rate of the Teton 
normal fault, Wyoming. Details are in Table 1 (see footnote 1).

throw rate, such complexities of the trace would not require subdivision 
of the trace into different fault trains.

The subdivision of fault traces into trains should ideally be indepen-
dent of seismicity, because long-term offset rates have already been 
defi ned as far-fi eld rates, or alternatively as averages over many earth-
quakes. In contrast, the fault segments mapped by previous Working 
Group(s) on (Northern/Southern) California Earthquake Probability 
were recognized primarily on the basis of the extent of historic or paleo-
seismic ruptures, and/or expert opinion about the likely extents of future 
ruptures. Because fault intersections and fault bends can be (or at least 
are often thought to be) barriers to rupture, there are many fault segment 
boundaries that are also mandatory fault train boundaries, but the two 
concepts are still distinct. Some segment boundaries based on termi-
nations of past ruptures are not required to be fault train boundaries, 
because there is no geometric basis for expecting a change in long-term 
offset rate at those points.

The newer fault sections mapped by the most recent Working Group 
on California Earthquake Probabilities are defi ned (in draft documents by 
C.J. Wills and coauthors) as “parts of faults that are defi ned by changes 
in geometry, slip rate, geomorphic expression, or earthquake rupture 
history.” Therefore, the set of fault section boundaries is the union of a 
minimal set of required fault train boundaries with the set of fault segment 
boundaries. So, fault sections are typically shorter and more numerous 
than either fault trains or fault segments. Any fault section is a valid fault 
train because it fi ts the defi nition above. However, if the fault section was 
limited by rupture extent, or by a boundary in geomorphic expression, it 
may be shorter than the longest possibly fault train that could be defi ned 
in that area.

Defi ning fault trains that are shorter than the longest possible fault train 
in the area is not an error in logic. Any valid fault train can be subdivided 
into shorter fault trains (which will have identical long-term offset rates). 
However, it is counterproductive, and therefore an error in scientifi c strat-
egy. It adds parameters to the regional model that are not needed. At the 
same time, it reduces the number of pairs and multiples of offset features 
that can be contrasted to learn more about sources of error. It also reduces 
the amount of data redundancy in the computation of combined rates, 
thereby increasing their uncertainties.

DISAGREEMENT BETWEEN TWO LONG-TERM OFFSET 
RATES

According to the conceptual model of rigid microplate tectonics, offset 
rates should typically be nearly constant along any fault train. However, 
slip rates might still vary if the distance to the (typically unknown) Euler 
pole were less than several times the width of the smaller microplate. 
Other tectonic paradigms with more distributed deformation away from 
(mapped) faults allow more parameters for offset rate variation along the 
trace. In addition, if one or both of the offset features is many millions 
of years old, the long-term offset rate for that fault may have changed 
through geologic time, causing a disagreement between rates averaged 
across different time windows. Long-term offset rates may also disagree 
in cases of fundamentally incorrect data, including failure of the pierc-
ing-point pair to span the whole fault zone, undetected complex initial 
shapes of offset features, or faulty correlations in space or in geologic 
time. Second- or third-hand data compilations may introduce more artifi -
cial disagreements through clerical error, overgeneralization, or oversim-
plifi cation of the uncertainties.

In order to assess the importance of each of these effects, it is useful 
to have a quantitative measure of the level of disagreement between any 
two long-term offset rates (for the same component of slip, on the same 
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fault train). I concentrate fi rst on disagreements between pairs of features, 
because this is conceptually and mathematically simpler than an ensemble 
analysis. However, once I have estimated the fractions of incorrect and 
inapplicable data, I use these in ensemble formulas to estimate combined 
distributions of offset rates as accurately as possible.

Because the long tails of most individual p
L
(�') distributions will 

almost always overlap to some extent, agreement or disagreement is not 
well represented by a purely binary classifi cation. Instead, a probabilistic 
scalar measure of disagreement is appropriate.

One condition suffi cient to demonstrate that two independent scalar 
random variables X and Z have different values is that their values are on 
opposite sides of some intermediate value y: X < y ≤ Z. Another suffi cient 
condition is the mutually exclusive alternative Z < y ≤ X. Here I adopt as a 
disagreement measure the scalar quantity δ defi ned by:

(30)

in terms of the two cumulative probability functions (for X and Z both 
non-negative).

A test of two distributions that have no overlap, and disagree com-
pletely, gives δ = 1. When X and Z have Gaussian distributions that are 
identical, δ = ½, which is the lowest possible result. The same result 
of δ = ½ is obtained when X and Z have Gaussian distributions with 
the same median but different standard deviations. This is an important 
property of the δ measure, which is not shared by some other popular 
metrics of differences between distributions (e.g., the maximum of the 
absolute value of the difference between the two cumulative probability 
functions). Use of δ is appropriate in Bayesian models like this project, 
where the distribution functions for long-term offset rates portray the 
plausibility of alternative rates given available information, rather than 
the frequency with which rates appear during repeated sampling. That is, 
δ is a conservative measure of differences between distributions, which 
tends to minimize the difference in cases of great uncertainty.

Whenever we compare two rate data from the same fault train, our 
null hypothesis is that the rates are the same. Low values of δ are consis-
tent with the null hypothesis, but high values of δ indicate that this null 
hypothesis can be rejected with a high degree of confi dence. To quan-
tify this relationship, it is necessary to consider δ as a random variable, 
with randomness inherited from the measurement errors in the two data 
that were then expanded into model cumulative-probability functions 

 and  and compared. I conducted Monte Carlo experiments on 
many pairs of simulated rate data sampled from a common Gaussian 
distribution. The model rate distribution for each of these simulated 
data was also Gaussian, but was centered on the sampled value rather 
than the true value. The standard deviation of each model distribution 
was the same as the standard deviation of the common parent distribu-
tion. The result was that values of δ > 0.846 occurred in only 5% of the 
cases: P(δ < 0.846) = 0.95, under all the conditions stated above, when 
the null hypothesis is true. However, the case of two equally broad dis-
tributions is not typical. In other Monte Carlo tests where the two simu-
lated data were sampled from two Gaussian distributions with very dif-
ferent widths (but still sharing a common median, representing the true 
value), the result was the threshold δ ' for which P(δ < δ') = 0.95  rose to 
approach, but not equal, 0.95. Therefore, I propose the following.

Conjecture 

When two data are samples of a common value, but measurement 
methods have introduced random errors, and when the model distribution 
functions for those two data accurately refl ect the distributions of sizes of 
the measurement errors, then P(δ < 0.95) ≥ 0.95. That is, there is no more 
than 5% chance of observing δ > 0.95 when comparing two honest but 
imprecise measurements of a common value.

Once δ values have been computed for all the comparable pairs of long-
term offset rates in a large data set, it is possible to begin to infer the main 
sources of disagreement. For example, the importance of changing slip 
rates over geologic time can be estimated by plotting δ as a function of the 
absolute value of the time gap between the ages of the two offset features. 
The importance of relative microplate rotation and distributed deforma-
tion might be estimated by plotting δ as a function of separation distance 
along the fault trace. The importance of clerical and oversimplifi cation 
errors can be assessed by comparing δ values for pairs of close, young 
offset features in primary versus secondary or tertiary literature. It is prob-
ably reasonable to lump together δ values from all the different classes of 
offset measures (dextral and sinistral strike slip, normal, and thrust fault 
throw) when conducting these empirical studies. Such lumping makes it 
possible to collect enough comparisons for statistical inferences.

ESTIMATION OF THE FRACTIONS OF INCORRECT AND 
INAPPLICABLE DATA

Once physical causes (variations of offset rate in time and space) and 
clerical causes (second-hand reporting) for disagreements have been mini-
mized, there is likely to be a residual population of disagreements that is 
largely due to fundamentally incorrect interpretation of the geologic his-
tory and/or miscorrelation of features or strata. This fraction of incorrect 
data can be estimated from the pattern of disagreements. Let us adopt δ ≥ 
0.95 as the criterion for a strong disagreement, corresponding to at least 
95% confi dence that the two long-term offset rates are different. Then, 
<5% of comparisons between correct data (for the same component of 
slip, on the same fault train, in the same tectonic epoch, from primary 
sources) should lead to a strong disagreement. Also assume that incorrect 
data are suffi ciently erratic in their values so that comparisons of incorrect 
data with correct data (or with other incorrect data) will always lead to 
strong disagreement. This assumption amounts to a restrictive or conser-
vative defi nition of incorrect, which will, in turn, tend to minimize the 
fraction of incorrect data that we infer at the end of this study. If α is the 
fraction of incorrect data, then the fraction of comparisons that result in 
strong disagreements (β) should be

    (31)

which is equivalent to the inverse relation

    (32)

so that (for example) β = 0.1 → α ≥ 0.027; or β = 0.3 → α ≥ 0.14; or β = 
0.5 → α ≥ 0.27.

The value of α obtained from such comparisons (equation 32) between 
data regarding young offset features (presumed to be from the same tec-
tonic epoch) estimates the fraction of the data that are fundamentally 
incorrect; this may be labeled . However, if comparisons are 
extended further back in geologic time, we expect βprimary(t) and αprimary(t) 
and to increase, because in addition to incorrect data there will now be 



Bird

588 Geosphere, December 2007

some data that are inapplicable to neotectonics. That is, even correct rates 
will begin to disagree because some rates have varied across different tec-
tonic epochs. The increase in α primary(t) from its neotectonic value provides 
an estimate of the fraction of inapplicable data. However, now the situa-
tion is less symmetric than before, so equations 31 and 32 no longer apply. 
If β primary(t) increases when comparing rates from progressively older off-
set features with those from young offset features, this increase in β is due 
almost entirely in increased probability of inapplicability of the rate based 
on the older offset feature. Therefore,

 (33)

For purposes of combining rate data into a single best-estimate neotec-
tonic rate, it makes little difference whether a rate is misleading because 
it is incorrect, or because it is inapplicable. Both possibilities will be 
expressed by the single fraction α(t) in the following section.

MERGING MULTIPLE RATE DATA INTO ONE COMBINED 
PROBABILITY DENSITY FUNCTION

For many projects, it may be necessary or desirable to merge all avail-
able long-term offset rates (for the same component of slip, on a single 
fault train), producing one combined � . For example, this step 
is required before simulating neotectonics with our kinematic fi nite-ele-
ment program NeoKinema (Bird and Liu, 2007). Taking this step implies 
a working hypothesis that variations in long-term offset rate along one 
fault train (due to nearby Euler poles and/or distributed anelastic deforma-
tion) are typically minor in comparison to the apparent variations caused 
by measurement errors and/or real variations caused by time-dependence. 
Those who do not accept this working hypothesis should simply use 
rates from individual offset features as point estimates, and ignore the 
combined pdfs of fault trains derived here.

We cannot expect to accurately treat those faults whose long-term off-
set rates vary along their traces with a simple algorithm like the one devel-
oped in the following. Nevertheless, some attention to possible artifacts 
of a uniform offset-rate assumption can prevent egregiously misleading 
results. The most serious cases are those with at least one datum showing 
an older overlapping formation (indicating that the fault has been locked 
since that time), combined with at least one datum showing younger 
scarps or other positive offsets. Examples include the Hoback normal 
fault of Wyoming, the Amargosa–Death Valley detachment fault of Cali-
fornia, and the San Gabriel–Vasquez Creek dextral fault of California. If 
we consider such logical contradictions as necessarily proving error in at 
least one of the data, then we can combine them with a standard procedure 
(detailed below) that takes account of the α of each datum. Experience 
shows that the fault-pinning overlap data will often “win” in the sense of 
producing a combined pdf for long-term offset rate that has a very small 
median and very small upper 95% confi dence limit. However, a more 
plausible interpretation is that this particular fault had variable long-term 
offset rate along its trace, and that the pinning overlap formation(s) should 
be regarded as effectively reducing the length of the fault trace that is cur-
rently active. In the absence of information on the probabilities of slip rate 
variations (along the trace) of various magnitudes, it is not yet possible 
to weight these alternatives quantitatively. However, I would not want to 
communicate invalid assurances about the safety of possibly dangerous 
faults. Therefore, I adopt a somewhat arbitrary rule here: fault-pinning 
(zero rate) data of greater age will not be used in computing combined 
offset rates when there is at least one datum of younger age showing posi-
tive offset. Instead, the resulting combined pdf will be marked with an 

asterisk to indicate that the active fault length in the neotectonic era is less 
than what it was in some paleotectonic era, and that the fault-pinning data 
should be considered when defi ning a reduced active fault length.

With these caveats, I now merge multiple rates (for a single offset com-
ponent on a single fault train) under a working hypothesis that the long-
term offset rate is a single non-negative number. The merging of multiple 
rates should take into account the probability (α

i
) that any individual rate 

is incorrect or inapplicable. Even with a number (i = 1,2,...n) of rates, there 
is also a non-vanishing probability  that all the data are incorrect 
or inapplicable. Therefore, it is necessary to invoke a prior distribution to 
write a formula for the combined pdf. Fortunately, these prior distributions 
can be obtained by iterative bootstrap processing, as described below. The 
prior distribution also serves as estimate in cases of faults that have no 
associated data.

When there are no data concerning a particular fault train, 

� �  (34)

When there is one datum concerning a particular fault train,

� � �  (35)

Where there are two data concerning a particular fault train,

� � � �

� �

     (36)

in which the superscripts on the probability density functions are identify-
ing indices (not exponents), and Lscale ≡ 1 km/m.y. is introduced to correct 
the units of the product before normalization. In numerical computation 
this factor has no effect and may be omitted.

Where there are three data concerning a particular fault train,

� � � �

� �

� �

� �

� � �

     (37)

The pattern is clear: the number of terms increases as 2n, while the com-
putational work increases as n2n. This makes it impractical to write (or 
compute) the exact result for cases with n = 12–18, which occur along 
some trains of the San Andreas fault. I handle such cases with an approxi-
mate, iterated formula:

�

� � �

(38)

for all i (sequentially increasing) in the range 2 ≤ i ≤ n, where  is 
defi ned as:

�

� �

�
 (39)
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and the range in which all distributions are computed is 0 ≤ �' < L
max

. 
Approximate formula 38 preserves the same number of terms, and the 
same set of leading coeffi cients [permuted serial products of α

i
 or (1 

– α
i
)] as exact formulas like equations 36 and 37. However, it is approxi-

mate for two reasons. (1) The fi rst term of the expanded polynomial 
form of the solution (which is generally the smallest) is proportional to 

�  rather than to � ; and (2) weights added by the 
normalizing operator N() are somewhat different because the operator is 
applied sequentially to each factor, instead of being applied once in each 
term of the result (except the leading term). This formula also has impor-
tant advantages: (1) closed form for any value of n, allowing implemen-
tation in a program; (2) computational work just proportional to n; and 
(3) simple interpretation. Equation (38) can be seen as a serial string of 
identical signal processors (one per datum), each of which is a leaky fi lter. 
The leak term passes the previous signal through unchanged except for 
fractional gain of α

i
; this represents the case that datum i is incorrect or 

inapplicable, and therefore should have no effect on the result. The fi lter 
term multiplies the previous pdf by the pdf of datum i and applies gain (1 
– α

i
); this represents the case that datum i is correct and applicable.

Tests were run on sets (n = 4–18) of real data, after the data were sorted 
either in order of increasing nominal rate, or in order of decreasing nomi-
nal rate. Computed medians and standard deviations of the combined rates 
were the same for either order of data, confi rming the desired symmetry 
of this approximate algorithm, even in the presence of numerical round-
off error.

In another test, accurate equation 37 was compared to approximate 
equation 38 for a number of actual cases of faults with n = 3 data (even 
though equation 38 is normally reserved for cases with n ≥ 4). Figure 
5 shows one of these comparisons in detail. Differences in the inferred 
median rate were never >10%. Approximate equation 38 tends to estimate 
a lower standard deviation for the combined rate in those diffi cult cases 
where all the αs are large. This effect may be due to the poor representa-
tion of the fi rst term of equation 37 by equation 38; however, the effect is 
expected to become less important as n increases.

When the number of offset features is large, there are typically some 
strong disagreements among them. In such cases, the combined pdf 
computed by these methods may be multimodal. An example is shown 
in Figure 6.

NUMERICAL COMPUTATION

All equations in this paper have been incorporated into a Fortran 90 
program. The source code is attached as fi le Slippery.f90; an executable 
version for Windows is attached as fi le Slippery.exe1. Each run through the 
program performs batch process on an entire offset-rate database; there-
fore, the iterative or bootstrap improvement of the prior distributions of 
offset rates , by employing the latest posterior distributions, requires 
only about three runs. Each pdf and cumulative distribution is represented 
internally by 4000 discrete values between nominal limits on the inde-
pendent variable (x

min
 ≤ X ≤ x

max
) that are estimated (in advance) to cor-

respond roughly to P(X ≤ x
min

) ≅ 0.0001 and P(X ≤ x
max

) ≅ 0.9999. During 
normalization of any distribution, these bounds are treated as if they were 
absolute (0 ≤ P ≤ 1). When X is uniformly positive, and the ratio x

max
/

x
min

 exceeds 10, discrete values are evenly spaced on a logarithmic scale. 

Figure 5. Probability density functions (pdfs) for long-term offset 
rate (throw rate) of the Santa Susana–San Fernando thrust fault, 
California. Details of the data are in Table 1 (see footnote 1). Curve 
labeled “accurate (37)” shows the combined pdf computed with 
exact equation 37, while curve labeled “approximate (38)” shows 
the combined pdf computed with the approximate, multidatum 
form of equation 38.

Figure 6. Example of a multimodal combined probability density 
function (pdf) for long-term throw rate, obtained by the merger of 9 
pdfs for the long-term throw rates determined from 9 separate off-
set features, using equation 38. The reason for the multiple peaks is 
that the proposed method acknowledges a small but nonzero prob-
ability that each of the data is incorrect or inapplicable (and not just 
imprecise). Data for the Teton normal fault of Wyoming are from 
Table 1 (see footnote 1).

1If you are viewing the PDF of this paper, or if you are reading this offl ine, please visit http://dx.doi.org/10.1130/GES00127.S1 (Slippery.f90), http://dx.doi.
org/10.1130/GES00127.S2 (Slippery.exe), http://dx.doi.org/10.1130/GES00127.S3 (Table_1.xls), http://dx.doi.org/10.1130/GES00127.S4 (Table_1.txt), http://dx.doi.
org/10.1130/GES00127.S5 (f_Gorda-Cal-Nev.txt), http://dx.doi.org/10.1130/GES00127.S6 (references_cited_Table_1.doc), http://dx.doi.org/10.1130/GES00127.S7 
(Table_2.xls), http://dx.doi.org/10.1130/GES00127.S8 (Table_2.txt), http://dx.doi.org/10.1130/GES00127.S9 (f_GCN_Bird2007_Table1.dig), or see the full-text ar-
ticle on www.gsajournals.org to access the table, source code, and executable fi les.
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When the range of X extends to zero (some ages and some fault offsets) 
or to negative numbers (ΔE), the discrete values are evenly spaced on a 
linear scale. Integrals are simply estimated as sums of 4000 mid-point 
values multiplied by their respective Δx's. All computations are done with 
eight-byte real numbers.

Some results will include nonzero probability densities for extremely 
large offset rates, which contradict our basic assumptions. This is espe-
cially true when the age of the offset feature has only an upper limit 
(equation 27). The same problem can arise in cases using the other types 
of pdf (equations 21–25) for the age of the offset feature, if laboratory 
uncertainties or inheritances are a large fraction of the nominal age. 
While unreasonable offset rates could be prevented by introducing a 
Bayesian prior model into all calculations, this would interfere with the 
planned bootstrap study of levels of agreement or disagreement between 
rates. In this part of the project, I take a simpler approach: I arbitrarily 
truncate the computation of p

L
 at an offset rate equal to four times the 

relative plate velocity in California (228 mm/yr), and normalize only 
the part of the pdf below that limit. The very slight loss of information 
caused by this truncation will be handled by reporting extremely large or 
unbounded rates with a special code (U for unreasonable or unbounded) 
in the tables, instead of reporting very large numbers that might cause 
alarm if taken out of context.

APPLICATION TO OFFSET FEATURES IN THE WESTERN 
UNITED STATES

Since beginning the research that led to a preliminary paper (Bird 
and Rosenstock, 1984), I have kept a personal database of published 
offsets along faults in western North America, and their ages. Because 
this database also supports paleotectonic studies (e.g., Bird, 1998), it is 
not limited to young offset features, and it contains some faults that are 
considered inactive. Each item in the database has fi elds for fault train 
index (required), sense of offset (required), citation (required), an offset 
distance (or range, or upper or lower limit) in kilometers (if available), a 
standard deviation for the offset (if available), the geologic time (or range 
of times, or limit on the time) (in Ma) when this offset began to occur 
(if available), the geologic time (or range of times, or limit on the time) 
(in Ma) when offset had ended (if available), the inferred offset rate (or 
range, or limit on the rate) in km/m.y. = mm/yr, and the standard deviation 
of this inferred offset rate. I estimated these inferred rates and standard 
deviations subjectively and entered them manually. They will not be used 
in this project, which is intended to replace them. The fault train index 
identifi es a particular named and digitized trace of a fault train (defi ned 
above) with a four-digit NeoKinema index number, such as “F0402 = San 
Andreas dextral fault, train G (Salton), CA.” The sense of offset is rep-
resented by a single-letter code: D = divergent heave across a low-angle 
normal fault; L = left-lateral strike slip; N = throw of high-angle normal 
fault; P = convergent heave across low-angle thrust plate; R = right-lateral 
strike slip; T = throw of thrust fault and/or associated monocline. This 
database structure means that there are no negative entries. This database 
has some serious defi ciencies: (1) many offsets that were published in the 
past decade have not yet been entered, due to imperfect upkeep; (2) many 
values are qualifi ed by equivocation characters (e.g., “~5” or “5?”) that do 
not follow defi ned rules; (3) many optional fi elds are blank; (4) latitude 
and longitude coordinates for offset features were not recorded; (5) the 
type of geochronology employed was not recorded; (6) some of the litera-
ture sources cited (e.g., abstracts) do not meet the high standard discussed 
previously as an ideal.

Because one person’s part-time effort is not suffi cient to track each piece 
of information on an offset feature to its original source, this database also 

includes offsets from secondary and tertiary sources in the literature. For-
tunately, these were systematically labeled. Primary sources (A) are those 
that give the original report of an offset by the investigators who did the 
mapping or trenching, or determined the age of an offset feature using 
laboratory geochronology. Secondary sources (B) are those that summa-
rize the literature on fault activity in a limited region, such as around one 
fault, one mountain range, or one basin. Tertiary sources (C) are those that 
summarize the literature for an entire state or larger region (e.g., Basin and 
Range province). For some minor faults in unpopulated regions, a tertiary 
reference may be all that is available. For example, Stewart (1998) noted 
maximum initiation ages (varying by region) for the normal faults he com-
piled in the Basin and Range province; in some regions he also noted that 
scarp heights are generally 0.3–2 km, and that this is a lower limit on the 
true throw; in other cases he described the total throw as 2–5 km. Such 
constraints have been entered as C-class data under each individual trace 
that appeared in the compilation maps of Stewart (1998).

Before processing with these new algorithms, the database was lightly 
edited for geographic extent and for geologic time window. I kept all 
faults with known or potential Neogene activity in the conterminous west-
ern United States, and in those parts of the borderland underlain by conti-
nental crust. I removed most faults that are entirely in Alaska, Canada, or 
Mexico, and entries concerning an earlier phase of slip that probably had 
a sense or rate different from the Neogene rate (e.g., Howell’s 1975 dis-
cussion of a proto–San Andreas fault system). Thus, the edited database 
corresponds roughly to the continental portion of the Gorda-California-
Nevada orogen (Bird, 2003), with geographic extensions eastward to the 
Rio Grande rift region. It contains 849 faults, with 3577 entries. This ver-
sion of this database is seen in Table 1 (fi les Table_1.xls or Table_1.txt; 
see footnote 1), which includes both input to the statistical analysis and a 
summary of its output. A partial version including only the fi rst nine col-
umns, which are read as input data by program Slippery, is the tab-delim-
ited ASCII fi le f_Gorda-Cal-Nev.txt, which is attached (see footnote 1). 
This latter fi le can be used in conjunction with Slippery.exe to reproduce 
the analysis.

However, the algorithm presented here does not use any inferred offset 
rate or its associated standard deviation, but only offset distances with 
associated offset age where both are recorded in the same entry of the 
database. A human editor might combine one author’s estimate of total 
offset with another author’s estimate of the age of fault initiation, but this 
algorithm will not attempt to do so. With this more strict criterion, there 
are only 995 data concerning dated offsets on 464 distinct fault trains. The 
breakdown of data by offset type is: D 4%, L 3%, N 61%, P 1%, R 22%, 
and T 8%. The number of distinct literature citations is 221. The break-
down of data entries (not references cited) by literature type is: 24% pri-
mary (A), 13% secondary (B), and 63% tertiary (C). A complete list of the 
full bibliographic citations corresponding to the short citations in Table 1 
is attached as fi le references_cited_Table_1.doc (see footnote 1).

Because this database has no fi eld for the type of geochronology 
employed, I arbitrarily assumed that all ages younger than 30 ka were 14C 
ages, and all other ages younger than 600 ka were cosmogenic nuclide 
ages, and in both cases I corrected for potential inheritance with equa-
tions 23 and 24. In those cases where this correction was inappropriate or 
redundant, the uncertainty in the age has been artifi cially infl ated, reduc-
ing the precision of the offset rate. This artifact could occasionally obscure 
real disagreements between rates.

To begin the analysis, uniform distributions were used as models of the 
six prior offset-rate pdfs �  for offset types D, L, N, P, R, T. Their 
assigned ranges were: mm/yr; mm/yr; mm/yr; 

mm/yr; mm/yr; and mm/yr. As each datum-
based pdf p

L
(�')was computed, it was averaged into one of six empirical 
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posterior offset-rate distributions (except that unbounded rates were not 
used in this step). In the second pass of this processing, these six poste-
rior distributions were used as prior distributions, and so on. This iterative 
estimation of the datum-based prior distributions was well converged by 
the third run.

Inferring probabilities of erroneous or inapplicable data, and computing 
combined long-term offset rates for each fault section, are both opera-
tions that require each offset datum to be associated with a fault train. 
The traces of the fault trains used in this phase of the work are contained 
in fi le f_GCN_Bird2007_Table1.dig, which is attached to this paper (see 
footnote 1). The links between Table 1 and this fi le are the NeoKinema 
fault train numbers (e.g., F0402; described previously). These trains were 
mostly generalized and hand-digitized from more detailed sources, such 
as Jennings (1994) or the Quaternary Fault and Fold Database maintained 
online by the U.S. Geological Survey. A decision was made at the start of 
the compilation to simplify multiple ruptures and/or discontinuous traces 
seen in Quaternary surface units (whose strain is often small) into a single 
continuous trace representing the estimated fault position at seismogenic 
depths (where strain is often larger). Thus the entire San Jacinto–Coyote 
Creek dextral fault system of California is represented by a single train 
(F0544). This practice has the effect of minimizing the number of fault 
trains and maximizing the opportunities for comparing data, and for merg-
ing them into combined rates. However, I consistently divided long fault 
traces into trains at points where their traces intersect with those of other 
major faults, because it is expected that long-term offset rates change at 
such junctions. Thus, the San Andreas fault is represented in this compila-
tion by seven trains.

The most interesting results concern the 323 cases in which rates from 
primary sources could be compared to rates from other primary sources (A/
A) describing the same offset component on the same fault train. As defi ned 
above, δ ≥ 0.95 was taken as the defi nition of strong disagreement, and the 
fraction of comparisons resulting in strong disagreement was described by 
symbol β primary(t). I further sorted these comparisons by the difference in 
age between the two offset features, and divided them into seven groups of 
equal population along the age-discrepancy axis. This yielded seven crude 
estimates for β primary(t) that are presented in Figure 7. The result was that 
β primary(t) shows an approximately constant value of ~13% for age differences 
up to ~3 Ma, after which it abruptly increases to ~56%.

This behavior is understandable given what is known of geologic his-
tory in the region. During the latest Cretaceous and early Tertiary (80–30 
Ma) there was low-angle or horizontal subduction starting at the Pacifi c 
margin (Bird, 1998; 2002). Slab roll-back ca. 30 Ma caused elevations to 
increase and stress directions to shift dramatically (Bird, 2002). Tecton-
ics changed further during the interval 28–20 Ma as new Pacifi c–North 
America transform plate boundary segments were created near the mar-
gin. A much more rapid change began ca. 20 Ma, when a subducting 
microplate froze onto the Pacifi c plate and abruptly changed its direction 
of motion (Nicholson et al., 1994), tearing open the Los Angeles basin and 
rapidly rotating the future Transverse Ranges. The last major transition 
occurred 10–5 Ma, when the Gulf of California began to open, the south-
eastern sections of the San Andreas fault were formed with a large initial 
left step, and the Transverse Ranges began to be elevated by thrusting. I 
speculate that resistance to Transverse Ranges formation may have accel-
erated the Sierra Nevada–Great Valley block to faster northwest motion 
(with respect to stable North America), thereby rotating stress fi elds and 
affecting tectonics throughout the Basin and Range province and perhaps 
even to the Rio Grande rift (Bird, 2002). Thus, the only two periods when 
we might expect relatively stability of rates are 85–30 Ma (from which 
only a very small number of offset features have been recorded) and 5–0 
Ma (which provides the majority of the recorded offset features).

Although this history suggests that it might be safe to average rates 
from offset features as old as 5 Ma in neotectonic studies, my preference 
is to rely on an empirical model in which the risk of inapplicability begins 
to rise for offset features older than 3 Ma (Fig. 7). This model beta curve 
is also shown in Figure 7. To construct this model, I lumped all disagree-
ments between primary offset rates since ≤3 Ma into the single value of 

. Then, according to equation 32, . 
That is, at least 4.3% of primary reports of neotectonic offset rates are 
incorrect or unrepresentative. For offset features older than 20 Ma, equa-
tion 33 implies αprimary(t) ≅ 0.522, which can be broken down as ~5% of 
primary data that are incorrect or unrepresentative, and ~47% of primary 
data that are correct but inapplicable to neotectonics.

There were also 397 opportunities to compare rates based on two ter-
tiary literature sources (for the same offset component and fault train). 
Of these, 206 concern offset features whose ages differ by ≤3 m.y., 
giving . According to equation 32, this implies 

. This is about three times the error rate of primary litera-
ture sources. Note that clerical error is not the only cause of additional 
error; oversimplifi cation of uncertainties and overgeneralization about 
rates of faults in some perceived (but possibly imaginary) class are prob-
ably also important.

Only 33 comparisons between offset rates based on secondary literature 
sources are available, and only 10 of these concern pairs of offset features 
with ≤3 m.y. difference in age. While the empirical  is 
intermediate between those for primary sources and for tertiary sources, 

Figure 7. Empirical estimation of rates of error and inapplicabil-
ity, using all possible comparisons of two data from the primary 
literature (class A) in the author’s database for the same component 
of long-term offset on the same fault train. Beta is the fraction of 
strong disagreements defi ned as δ ≥ 0.95 (where δ is defi ned in 30). 
Comparisons are arranged along a horizontal axis based on the dif-
ference in the ages of the two offset features. Blue dots are empirical 
beta values, each based on 1/7th of the set of available comparisons. 
The green curve is a simple model suggested by the blue dots, and 
by the regional geologic history of the western conterminous United 
States. Alpha (red curve) is the inferred fraction of incorrect or 
inapplicable rates, computed from the green curve by using equa-
tions 32 and 33. This curve for alpha was used in the computation of 
the combined rates in Tables 1 and 2(see footnote 1) and Figures 5 
and 6. CA—California; NV—Nevada.
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the number of comparisons is too small to rely on this as a good empiri-
cal estimate of . For purposes of further computation, I assume 
instead that .

Finally, these empirical values of α (as a function of literature source 
type and age of the offset feature) were used in equations 34–39 to com-
pute best-estimate combined pdfs for long-term offset rate of each the 
fault trains in my database. Table 1 presents 7 defi ning measures of each 
distribution: lower bound [of 95% confi dence range, at P(L < �) = 0.025], 
mode, median, mean, upper bound [of 95% confi dence range, at P(L < �) 
= 0.975], and standard deviation. Many distributions are skewed so as to 
have longer higher probability densities at low offset rates compared to 
high offset rates; therefore, the ordering of the three central measures is 
typically: (mode) < (median) < (mean). My preference is to choose the 
median when only a single numerical estimate of the long-term offset rate 
is requested, but also to note the formal standard deviation.

APPLICATION TO OFFSET FEATURES IN CALIFORNIA

I also used the same program (Slippery) to conduct a second, largely 
independent analysis of the PaleoSites Database subset of the U.S. Geo-
logical Survey Quaternary Fault and Fold Database. The PaleoSites Data-
base was developed by Susan Perry with assistance from Edward Field, 
Chris Wills, and Vipin Gupta. It is intended to summarize all published 
data on offset features and/or paleoseismicity on active and potentially 
active sections of faults in California, supplemented by the interpretations 
(slip rates, numbers of paleoearthquakes) of the original authors.

Specifi cally, I processed the combined-events portion of the Paleo-
Sites information as it appeared in spreadsheet form as of 14 February 
2007. There were 471 rows referring to the same number of paleosites. 
However, as WG_FAULT_ID (Working Group on California Earthquake 
Probabilities fault section identifi cation number) and FAULT_NAME are 
primary organizing fi elds, some paleosites are necessarily double entered 
under two alternate fault names (with different fault identifi cation num-
bers). If entries in which FAULT_NAME includes “alt 2” are not counted, 
then the number of rows (and number of paleosites) is 421. Of these, 158 
originated in the older Fault Activity Database of the Southern Califor-
nia Earthquake Center (SCEC-FAD); 87 originated in the detailed reports 
of the online U.S. Geological Survey Quaternary Fault and Fold Data-
base (QFaults); and 176 originated in my personal database, having been 
selected for PaleoSites by Wills and/or Perry. The advantage of merging 
these sources is that QFaults and SCEC-FAD are more up to date than my 
compilation, but my compilation extends further back in geologic time.

Not all of these entries could be processed by my program. It is nec-
essary to have entries in the SENSE_OF_MOTION fi eld, in the MEA-
SURED_COMPONENT_OF_SLIP fi eld, in at least one of the start-time 
fi elds [PREF_START_TIME, MAX_START_TIME_(earliest), and/or 
MIN_START_TIME], and in at least one of the offset-distance fi elds 
[PREF_OFFSET_(m), MAX_OFFSET, and/or MIN_OFFSET]. This 
limited the usable rows and/or paleosites to 239 (not counting duplicate 
alternate-trace entries, and also only single counting very large offsets that 
are multiply entered under several fault sections along the same fault). 
Of these, 2 rows and/or paleosites were from SCEC-FAD, 64 were from 
QFaults, and 173 were from my personal database. Therefore, there is very 
substantial redundancy between the information presented in this section 
and that analyzed in the previous section. The principal differences are the 
limitation of the geographic scope to California, and the more up to date 
status of PaleoSites.

My method of analysis requires codes for sources in primary literature 
(A), secondary literature (B), or tertiary literature (C), as defi ned in the 
previous section. For the PaleoSites entries originating from my database, 

this code was extracted from fi eld BIRD_FAULT_ID-REFCAT. All other 
entries were considered to be from primary literature (class A), as this is 
the practice of the online QFaults. The result was 211 class A rows, 51 
class B, and 2 class C.

As in the previous section, analysis was begun with uniform distribu-
tions assumed for each of the six prior long-term offset-rate pdfs for the 
six types of offset (D, L, N, P, R, T). The analysis was repeated three times, 
with iterative replacement of the prior distributions by the posterior distri-
butions, with good convergence.

The input and output of this analysis are both displayed in Table 2 (fi les 
Table_2.xls or Table_2.txt; see footnote 1).

As before, I compared all possible pairs of single-feature long-term 
offset rates for the same component of slip on the same fault section and 
computed the disagreement measure δ. Note that the division of California 
fault traces into sections in PaleoSites follows Fault Section Database v.2 
(created by C.J. Wills and coworkers in the Working Group on California 
Earthquake Probabilities), which was based on Cao et al. (2003), which 
was based on Petersen et al. (1996). This is different from my division of 
fault traces into a minimal set of fault trains discussed in the previous sec-
tion. However, any fault section should be a valid fault train.

There were not enough comparisons within literature classes B or C 
to draw any conclusions, but there were 447 A/A comparisons, including 
304 in which the difference in ages of the two offset features was no more 
than 3 m.y. This population yields (almost identi-
cal to the previous result for the western conterminous U.S. as a whole), 
which is not surprising as a large fraction of the offset features were 
also in the group previously analyzed. Then, according to equation 32, 

. Based on either database, it appears that ~5% of reports 
of young (≤3 Ma) offset features in the primary literature are incorrect or 
unrepresentative.

The only notable difference in overall statistical results is seen in Figure 
8, where subsample β(t) values are plotted against the time-dependent β(t) 
model that was used in the previous analysis (copied from Fig. 7). Instead 
of rising gradually through the interval 3–20 Ma as before, empirical β(t) 
from this analysis of the PaleoSites Database seems to jump suddenly 
upward at 8 Ma, from the same low neotectonic level of 13%–15% that 
was seen previously, to the same high level of 55%–60% that was seen 
previously. One interpretation might be that California tectonic rates have 
actually been stable since 8 Ma, and that offset features of 3–8 Ma age 
in California can be used without any additional risk of inapplicability 
(although we found above that they are less reliable in the conterminous 
western states as a whole). Another interpretation is that some degree of 
preselection has been applied, because of the stated intent to represent 
only neotectonics in SCEC-FAD, Qfaults, and PaleoSites. That is, rates 
obviously disagreeing with Quaternary and/or Holocene rates may have 
already been edited out to some extent. If so, the apparent stability of rates 
beyond 3 Ma could be an artifact, and not a reliable guide to the treat-
ment of new results. In the merging of single-feature rates to produce the 
combined PaleoSites (California) long-term offset rates shown in Table 2, 
I have made the conservative choice that offset features older than 3 Ma 
present increasing risk of inapplicability, as in the previous section.

DISCUSSION

In this project I have attempted to defi ne and demonstrate automated 
numerical procedures for quantifying long-term offset rates that are more 
objective and reproducible than the committee-of-experts method previ-
ously used in seismic hazard evaluation. Because these methods yield full 
(estimated) probability density functions for the offset rate at any datum 
point (and also tentative combined pdfs for the assumed-uniform rate of 
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any fault train), it will ultimately be possible to test their validity with new 
data, although it may take 25–50 yr before enough new data have been 
collected.

The need for more primary data is highlighted by a few summary 
statistics showing how much remains unknown. For example, the rela-
tive precision with which a long-term fault offset rate is known could be 
measured by a metric defi ned as the ratio of the median of the combined 
long-term offset rate distribution to the full width of its 95% confi dence 
interval. For a Gaussian distribution, this metric would be the mean divided 
by four standard deviations. In the broader Gorda-California-Nevada oro-
gen region (Table 1), only 21 fault trains have precisions exceeding 2 by 
this metric. Only 48 fault trains have precisions >1, which I take as a mini-
mum standard for a well-constrained rate. At the other end of the preci-
sion scale, 362 active (or potentially active) fault trains in my compilation 
for the western conterminous U.S. have no dated offsets, so their rates are 
estimated entirely from the bootstrap prior distributions, and they have 
relative precision metrics of 0.04–0.16 (depending on fault type).

To create a comparable statistic for California, consider that there are 
198 active fault sections in the Working Group on California Earthquake 
Probabilities (WGCEP) Fault Model 2.1, which is a mutually compatible 
selection of fault sections from the Fault Section Database that was used 
by the WGCEP in its 2007 update of seismic hazard in California. Table 
2 shows 97 combined long-term rates for some of these fault sections, 
based on the PaleoSites Database, but only 30 of these combined rates 
are well constrained. These fi gures do not count alternate traces beyond 
the fi rst. Thus, ~30/198 ≅ 15% of active fault sections in California have 
well-constrained rates. This is higher than the overall western contermi-
nous U.S. fraction of 48/849 trains ≅ 6% well constrained, but still low in 
absolute terms. If California is excluded, the fraction of well-constrained 
fault trains in the other conterminous western states, based on Table 1, 
drops to only 15/655 ≅ 2%.

A potentially offsetting consideration is that the faults that are well-con-
strained tend to be those with higher offset rates. One way to quantify this 
is in terms of each fault’s contribution to the regional seismic potency rate 
(integral of long-term slip rate over seismogenic fault area). For simplicity, 
I assume the following downdip, seismically coupled fault widths (Bird 
and Kagan, 2004) throughout the conterminous western U.S.: 8.6 km for 
strike-slip faults, 3.7 km for normal faults, and 38 km for thrust faults. 
Multiplying my best-estimate (median) slip rates from Table 1 by these 
widths and by fault lengths from digitized traces, I crudely estimate the 
seismic potency rate for each fault. The result is that in California, faults 
with well-constrained rates contribute (12.5 m3/s)/(32.7 m3/s) = 38% of 
the seismic potency rate. In the western conterminous U.S. as a whole, 
faults with well-constrained rates contribute about (12.6 m3/s)/(36.6 m3/
s) = 34% of the seismic potency rate. In the western conterminous U.S. 
excluding California, faults with well-constrained rates contribute about 
(0.055 m3/s)/(3.91 m3/s) = 1.4% of the seismic potency rate. These propor-
tions must be interpreted with caution because their denominators depend 
on the slip rates of many faults whose slip rates are not well constrained. 
Also note that none of these fi gures include the enormous seismic potency 
rate of the Cascadia subduction zone megathrust (~130 m3/s), which is 
based on plate tectonic models rather than conventional offset geologic 
features (Bird, 2003; Bird and Kagan, 2004).

Another interesting way to look at these results is to plot the value of 
the metric for all fault trains versus the number of offset features used in 
the combined rate, as in Figure 9. Here we see a clear increase in preci-
sion of the combined rate with increasing number of data. Only when the 
number of offset features reaches four is there an even chance of achiev-
ing a well-constrained combined rate, and only when the number of offset 
features reaches seven or more is there virtual certainty. Thus, funding 
for neotectonic slip-rate studies should never be withheld on the basis of 

Figure 8. Comparison of the empirical models for frequency of strong 
disagreement (β) and estimated fraction of incorrect or inapplicable 
data (α) that were obtained in Figure 7 with actual β values for all 
primary literature (class A) comparisons of rates on the same fault 
section, but using the PaleoSites database for California faults only. 
The values of β for comparisons in which the offset features differ 
by <3 m.y. in age is very similar to that in Figure 7. Chance of inap-
plicability rises sharply when the offset feature is old. WGCEP—
Working Group on California Earthquake Probabilities.

Figure 9. One possible metric describing precision of combined long-
term offset rates (the median divided by the full width of the 95% 
confi dence interval), shown as function of the number of offset fea-
tures used in the computation of the combined rate, for the author’s 
database covering the western conterminous United States (Gorda-
California-Nevada orogen, GCN). I arbitrarily defi ne a combined 
rate as “well constrained” when this metric exceeds unity. Note the 
log scale for the vertical axis. Also, note that in the left-most column 
of plotted points (at zero data), hundreds of faults plot on top of each 
other. All data are from Table 1 (see footnote 1).
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concerns over redundancy when the number of published offset features 
is less than this.

In addition to collecting new data, the community of neotectonic geolo-
gists and geophysical modelers could improve these results more rapidly 
in two ways. Erroneous or inappropriate assumptions that I may have 
made can be corrected after appropriate debate, while keeping the over-
all formalism. Also, increased engagement of primary fi eld investigators 
with these data compilations should result in more complete and accurate 
tables of primary observations and their uncertainties. A process of mutual 
education between fi eld geologists and mathematical geophysicists has 
begun, and needs to continue.

In the immediate future, these rates and uncertainties will be used 
as input to kinematic fi nite-element modeling of neotectonics with our 
program NeoKinema, in order to estimate the many unknown long-term 
offset rates by incorporation of geodetic data, stress-direction data, and 
kinematic consistency. Other investigators may also wish to employ them, 
either as input data for alternative kinematic models, or as test data to 
evaluate the relative success of various dynamic models.

APPENDIX: PROOF OF EQUATIONS 6 AND 7

Let X and Y be two independent random variables, with associated probability 
density functions (pdfs) of p

X
(x') and p

Y
(y'). Let H(X,Y) be an algebraic function that 

is both differentiable and monotonic (hence, invertible) with respect to each of X 
and Y. The pdf of H, symbolized by p

H
(h'), is defi ned as:

(A1)

Also, the cumulative probability of any given value of H can be expressed as 
the limit of sums of probabilities in mutually exclusive cases defi ned by an infi nite 
series of non-overlapping, adjacent value ranges of independent variable X. In the 
case ∂H/∂Y > 0 where small values of Y are associated with small values of H,

 
    (A2)

Combining equations A1 and A2,

    (A3)

Combining the common limit operator and factor,

    (A4)

If the term 1/dh' is moved so that dh' only appears in the last term, the related 
limit can be taken locally:

 

    (A5)

Now, recall that H is assumed monotonic in Y; therefore, an infi nitesimal step 
in H at fi xed X implies an infi nitesimal step in Y. This permits us to linearize the 
last term:

 
    

    (A6)

We can now recognize the left parts of this formula as equivalent to an integra-
tion of p

X
 with respect to dx':

 (A7)

The alternate case that∂H/∂Y < 0 is the same except that a negative sign appears 
due to the reversal of inequalities along the Y axis, and the consequent use of com-
plements of cumulative probabilities. Both cases can be combined into one formula 
by writing the absolute value of the partial derivative. Thus, the pdf of function H 
can be expressed as a weighted convolution:

 

 (A8)

where all three terms inside the integral are uniformly non-negative. This is equa-
tion 6 in the paper. Equation 7 is obtained by simply switching the generic symbols 
X and Y.
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