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The principle, that the rate of internal viscous dissipation is at a minimum, is incorrect when temperature and
velocity fields are linked through temperature-dependent viscosity or density.  This makes it inappropriate for the
study of spreading ridge – transform fault systems or other plate-tectonic problems with large density stratification
resulting from large temperature gradients.  Corrections to the principle are noted for cases without heat advection
but with boundary tractions or non-linear materials.

In this essay we caution against three types of
unjustified application of the minimum-dissipation
principle to problems of flow in the Earth.  The first is
the failure to include appropriate boundary terms when a
part of the Earth is isolated for study.  The second is
improper scaling of internal dissipation terms when the
material has a power-law rheology.  Finally, we
consider the breakdown of the principle when
temperature and flow fields become linked – as they are
in plate tectonics.  This third problem is fundamental,
because there is no other functional whose minimization
(with respect to flow geometry) will solve these
problems either.  We conclude that laboratory modeling
or direct solution of the governing differential equations
are the only valid approaches.

These difficulties have been understood and
mentioned in the applied mathematics literature for
years, and indeed are readily apparent when one
attempts to derive the minimum-dissipation principle
from physical conservation equations.  We restate them
here because we see a possibility that the principle
might come to be regarded as the equivalent of the
second law of thermodynamics in the geophysical
literature.  Recently, many authors [1–6] have assumed

this principle without detailed justification and applied it
without observing some necessary restrictions or
assumptions.

Allow us to define a functional which includes half of
the viscous dissipation rate, minus the rates of work
done by pressure, gravity, and boundary tractions:
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Here and throughout the paper we use the summation
convention. iV  represents the velocity vector, P  is
pressure, η  is viscosity, and iX  is the body force/
volume vector.  The last term is the surface integral of
the scalar product of velocity with the surface force/
area vector, which can also be written as:
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in terms of stress tensor ijσ  and the vector jξ  of

direction cosines of the outward normal direction.  The
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surface frees  is only that surface on which velocity is
not specified.  This means that if the problem includes
no body forces and if the system is either rigidly
constrained or free of external forces, we return to the
internal-dissipation functional.

At a minimum of functional (1), it must be stationary:
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The great value of this potential to date has been in
engineering problems in which the viscosity, density,
and surface tractions are specified and not varied.  That
is,

0i iXδη δ δτ= = = (3)

In that case we can solve (2) by requiring the remaining
terms to vanish.  Making use of Gauss' method of
integration by parts and the commutativity of the
operators δ  and ix∂ ∂  [7], we find the Euler equations
(which are the coefficients of the pressure and velocity
variations).  For pressure:
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This is the usual Boussinesq or incompressible
approximation of mass-conservation.  (Although it is
essential to take account of adiabatic compression
effects for heat-conservation [8], this is entirely
adequate to constrain the form of the flow.)  The other
Euler equations are those of momentum-conservation in
the absence of significant acceleration:
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Since the minimization of π  is equivalent to (4) and
(5), we see that the minimum-dissipation principle as
defined here is correct for creeping flows with
predetermined viscosity and density.

The first questionable step is the neglect of the
surface integral in (1).  Mathematically, it is required to
cancel out the boundary term which arises when the
velocity and pressure terms of (2) are integrated by parts
in search of Euler equation (5).  It can be dropped only

if there is no surface with free velocity, or no traction on
such surfaces.  The authors of papers [2], [3], [5], and
[6] have neglected this surface term, and in so doing
have made an unstated assumption that the parts of their
model domains which do not have velocity boundary
conditions are in contact with perfect fluids.  In view of
the increasing evidence for whole-mantle convection
with no perfect decoupling, this seems to be an
assumption that requires some justification.  The only
way to avoid some approximation of the interaction of
the different parts of the Earth is to extend the domain to
the whole solid planet, and minimization principles
should not be used to disguise this unpleasant fact.

When boundary (or gravity) forces are added to the
problem in addition to velocity boundary conditions, it
becomes important to multiply the local viscous
dissipation in (1) by the correct constant.  Note that
when η  is independent of V  we minimize one-half of
the dissipation rate, in order to get the correct constant
coefficient of viscosity in (5).  Similar caution is
required when the viscosity depends on the rate-of-
strain, as it usually does in Earth materials [9].  Bird
[10] has shown that there is a more general functional
which is valid for such variable viscosity.  He states that
when a power-law rheology is used:
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that the new functional reduces to the ordinary
dissipation functional.  We wish to correct a second
error by pointing out that in this case the π η∂ ∂  term
of (2) becomes non-zero and when integrated
contributes additional factors of the stress gradient to the
one obtained from the ( )i jV xπ∂ ∂ ∂ ∂  term.  Therefore

it is necessary to start with a corrected form of (1) which
begins:
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in order to recover (5) from its minimization.  Obviously
this is equivalent to (1) for 0b = .  In the case where
different parts of the domain have different b  values, b
is considered a variable in the above volume integral.
Paper [6] fails to take this into account in determining
the minimum dissipation configuration of ridges and
transforms of different power-law rheologies.
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The most serious of the three errors, though, is to
assume that (1) still implies (5) when temperature
controls viscosity and density and is in turn controlled
by the flow.  This case of profoundly non-linear physics
is dominant in plate tectonics, where the flow has a
large Nusselt number and the materials have a
temperature-dependent viscosity of the form [9]:
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For example, most of the papers cited deal with mid-
ocean spreading ridges, which are hot regions
maintained by convective flow.  A viscosity contrast of
several orders of magnitude is caused by this thermal
anomaly and is essential to the mechanics of the ridge
[11, 12].

The approach of all authors to date has been to
implicitly calculate the temperature field associated with
a trial flow field by solving the steady-state heat-
conservation equation:
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where K  is conductivity, T  is Kelvin temperature, H
is radioactive heat production, α  is the thermal
expansion coefficient, pC  is heat capacity, and t  is

time.  Equation (8) may be represented by intuitive or
approximate adjustments of viscosity, as in [1–3] and
[6] where the thermally-weakened ridge center is
assumed to vary its geometry as the trial flow field is
varied.

The problem with this approach is that the viscosity
and body force variations in (2) become non-zero.  To
consider only the former:
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Again, consider only the first term of (9):
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Assuming that one succeeds in minimizing (1) with
auxiliary conditions (7) and (8), these many new terms
in (2) will result in Euler equations which are different
from the Stokes equation (5) and are non-physical.  To
put it another way: at a point in ( , )V T

�

 space where the
Stokes equation (5) and the heat equation (8) are
satisfied, the new terms in (2) will cause the variation of
π  to be non-zero, so the functional cannot have a
minimum at that point.  It is hard to predict in general
what velocity field will give the minimum dissipation,
but in general it will not be in static equilibrium.  Thus
the "stable" ridge-transform angles computed by the
above authors have questionable validity.

Attempts have been made to find a new functional
whose minimization will also imply (8) and thus solve
the problem.  They have not succeeded because the heat
equation contains advective terms V T∇

� �

�  and V P∇
� �

�

which would require this new functional to have a non-
symmetric Frechet differential.  It can be shown [13, 14]
that no functional exists whose global minimization
yields such differential equations.  This is why the
Helmholtz minimization theorem holds only for slow
flow, where inertial terms V V∇

� � �

�  are neglected [15].
Finlayson shows that if one is also willing to impose the
adjoint of the physically-motivated differential
equations, then a functional can be found whose
minimization yields them both.  However, in the case of
non-linear equations such as these, the adjoint condition
is complex and frequently non-physical.  In general,
points in ( , )V T

�

 space which satisfy the physical
differential equations will not satisfy the adjoint
equations, and so cannot be located by the vanishing of
the variation of these "extended functionals".

The only method now known for solving non-linear,
non-self-adjoint partial differential equations by use of a
functional is the "local potential" method, developed by
Glansdorff and Prigogine [16], and applied by Lebon
and Mathieu [17] and others.  Its essence is the
construction of a functional of both velocity and
temperature and some small perturbations of each.  This
functional is written so that the physical differential
equations are recovered by minimizing it with respect to
the V  and  T  variations alone (holding the trial
solution fixed), and the subsidiary condition that the
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variations giving this minimum be zero.  Although
mathematically interesting, this type of functional is not
very useful in choosing the best of many approximate
solutions as the above-mentioned authors have done.
The functional will not have a physical significance in
convective problems like plate tectonics, so the
comparison of functional values for competing solution
estimates at zero perturbation means nothing.

In short, geophysicists would do well to give up the
search for global solution methods for temperature-
dependent flow problems.  The minimum-dissipation
principle is really only good for finding an upper bound
to the dissipation in a very restricted class of problems
(equation (3)).  For the advective problems
characterizing plate tectonics, an appropriately-scaled
laboratory model will yield reliable conclusions and
new insights (e.g. [18]).  When appropriate materials do
not exist, one must solve the governing differential
equations directly by analytical or numerical means.  Of
these, the most flexible are the finite-difference and
finite-element methods, which can in principle be
applied to any differential equation.  Glansdorff and
Prigogine [16] have shown that their "local potential"
method is equivalent to the self-consistent Galerkin
method that underlies finite-element solutions.
Gallagher et al. [19] present a comprehensive collection
of these methods.  Whatever course is chosen, a
combination of stability analysis and physical insight
must be used in interpreting the results, because of the
possibilities of multiple solutions, oscillations, or
instabilities which make the study of geology so
interesting.
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