67. Curren, I. S., and P. Bird [2014] Formation and suppression of strike-slip fault systems, Pure Appl. Geophys., 171(11), 2899-2918, doi: 10.1007/s00024-014-0826-7.

Abstract.  Strike–slip faults are a defining feature of plate tectonics, yet many aspects of their development and evolution remain unresolved. For intact materials and/or regions, a standard sequence of shear development is predicted from physical models and field studies, commencing with the formation of Riedel shears and culminating with the development of a throughgoing fault. However, for materials and/or regions that contain crustal heterogeneities (normal and/or thrust faults, joints, etc.) that predate shear deformation, kinematic evolution of strike–slip faulting is poorly constrained. We present a new plane-stress finite-strain physical analog model developed to investigate primary deformation zone evolution in simple shear, pure strike–slip fault systems in which faults or joints are present before shear initiation. Experimental results suggest that preexisting mechanical discontinuities (faults and/or joints) have a marked effect on the geometry of such systems, causing deflection, lateral distribution, and suppression of shears. A lower limit is placed on shear offset necessary to produce a throughgoing fault in systems containing preexisting structures. Fault zone development observed in these experiments provides new insight for kinematic interpretation of structural data from strike–slip fault zones on Earth, Venus, and other terrestrial bodies.